Skip to main content
Log in

Films Based on Egg White Protein and Succinylated Casein Cross-Linked with Transglutaminase

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Transglutaminase (TGase) and succinylation could modify the physicochemical characteristics and the functional properties of proteins. The aim of this work was to cross-link egg white protein (EWP) and succinylated casein with TGase and to assess the feasibility of making a novel composite protein film. The effects of succinylated casein content, reaction time, and TGase concentration on the mechanical properties, physical characteristics (thermal property and degree of crystallinity), and structure properties (secondary structure and surface micrograph structure) of the film were investigated in this study. The results revealed that the susceptibility of EWP to TGase-mediated cross-linking modification was enhanced by succinylated casein. Meanwhile, the films with TGase were more homogeneous and smoother and possessed better water resistance and thermal stability. The content of α-helix, β-turn structures were increased whereas β-sheet structure was decreased. The spatial conformation and degree of crystallinity of composite protein film were also affected by TGase. The increase of the degree of crystallinity of the composite film further proved the improvement of film mechanical properties induced by TGase and succinylated casein. Based on the above results, this study provides relevant data and insights for the TGase/chemical modification of protein-based edible films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arfat, Y., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2016). Physico-mechanical characterization and antimicrobial properties of fish protein isolate/fish skin gelatin-zinc oxide (ZnO) nanocomposite films. Food & Bioprocess Technology, 9(1), 101–112.

    Article  CAS  Google Scholar 

  • Bae, H. J., Park, H. J., Hong, S. I., Byun, Y. J., Darby, D. O., Kimmel, R. M., & Whiteside, W. S. (2009). Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT - Food Science and Technology, 42(6), 1179–1186.

    Article  CAS  Google Scholar 

  • Bigi, A., Borghi, M., Cojazzi, G., Fichera, A. M., Panzavolta, S., & Roveri, N. (2000). Structural and mechanical properties of crosslinked drawn gelatin films. Journal of Thermal Analysis and Calorimetry, 61(2), 451–459.

    Article  CAS  Google Scholar 

  • Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M., & Payne, G. F. (2003). Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials, 24(17), 2831–2841.

    Article  CAS  Google Scholar 

  • Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. J., Soares, N. F. F., & McHugh, T. H. (2014). Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocolloids, 35, 287–296.

    Article  CAS  Google Scholar 

  • Gennadios, A., Weller, C. L., Hanna, M. A., & Froning, G. W. (1996). Mechanical and barrier properties of egg albumen films. Journal of Food Science, 61(3), 585–589.

    Article  CAS  Google Scholar 

  • Gounga, M. E., Xu, S.-Y., & Wang, Z. (2007). Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. Journal of Food Engineering, 83(4), 521–530.

    Article  CAS  Google Scholar 

  • Gu, L., Wang, M., & Zhou, J. (2013). Effects of protein interactions on properties and microstructure of zein–gliadin composite films. Journal of Food Engineering, 119(2), 288–298.

    Article  CAS  Google Scholar 

  • Han, X. Q., & Damodaran, S. (1996). Thermodynamic compatibility of substrate proteins affects their cross-linking by transglutaminase. Journal of Agricultural and Food Chemistry, 44(5), 1211–1217.

    Article  CAS  Google Scholar 

  • Haq, M. A., Hasnain, A., & Azam, M. (2014). Characterization of edible gum cordia film: Effects of plasticizers. LWT - Food Science and Technology, 55(1), 163–169.

    Article  Google Scholar 

  • Kieliszek, M., & Misiewicz, A. (2014). Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologia (Praha), 59(3), 241–250.

    Article  CAS  Google Scholar 

  • Kowalczyk, D., & Baraniak, B. (2011). Effects of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of Food Engineering, 105(2), 295–305.

    Article  CAS  Google Scholar 

  • Larré, C., Desserme, C., Barbot, J., & Gueguen, J. (2000). Properties of deamidated gluten films enzymatically cross-linked. Journal of Agricultural and Food Chemistry, 48(11), 5444–5449.

    Article  Google Scholar 

  • Li, C., Luo, J., Qin, Z., Chen, H., Gao, Q., & Li, J. (2015). Mechanical and thermal properties of microcrystalline cellulose-reinforced soy protein isolate-gelatin eco-friendly films. RSC Advances, 5(70), 56518–56525.

    Article  CAS  Google Scholar 

  • Lim, L.-T., Mine, Y., & Tung, M. A. (1998). Transglutaminase cross-linked egg white protein films: tensile properties and oxygen permeability. Journal of Agricultural and Food Chemistry, 46(10), 4022–4029.

    Article  CAS  Google Scholar 

  • Liu, F., Majeed, H., Antoniou, J., Li, Y., Ma, Y., Yokoyama, W., Ma, J., & Zhong, F. (2016). Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature. Food Hydrocolloids, 58, 20–28.

    Article  Google Scholar 

  • Mahmoud, R., & Savello, P. A. (1993). Solubility and hydrolyzability of films produced by transglutaminase catalytic crosslinking of whey protein1. Journal of Dairy Science, 76(1), 29–35.

    Article  CAS  Google Scholar 

  • McCluskie, M., & Kennedy, J. F. (2003). Protein-based films and coatings: Aristippos Gennadios (Ed.). Carbohydrate Polymers, 53(4), 508.

  • Mizuno, A., Mitsuiki, M., & Motoki, M. (2000). Effect of transglutaminase treatment on the glass transition of soy protein. Journal of Agricultural and Food Chemistry, 48(8), 3286–3291.

    Article  CAS  Google Scholar 

  • Motoki, M., & Seguro, K. (1998). Transglutaminase and its use for food processing. Trends in Food Science & Technology, 9(5), 204–210.

    Article  CAS  Google Scholar 

  • Motoki, M., Aso, H., Seguro, K., & Nio, N. (1987). αs1-casein film prepared using transglutaminase. Agricultural and Biological Chemistry, 51(4), 993–996.

    CAS  Google Scholar 

  • Niu, F., Dong, Y., Shen, F., Wang, J., Liu, Y., Su, Y., Xu, R., Wang, J., & Yang, Y. (2015). Phase separation behavior and structural analysis of ovalbumin–gum Arabic complex coacervation. Food Hydrocolloids, 43, 1–7.

    Article  CAS  Google Scholar 

  • Nuanmano, S., Prodpran, T., & Benjakul, S. (2015). Potential use of gelatin hydrolysate as plasticizer in fish myofibrillar protein film. Food Hydrocolloids, 47, 61–68.

    Article  CAS  Google Scholar 

  • Oster, G. (1954). Principles of polymer chemistry. Journal of Chemical Education, 31(12), 669.

    Article  Google Scholar 

  • Qiao, L., Jiazhen, P., Zhiying, H., Jianqiang, B., & Qiannan, X. (2014). Characterization of WPI-NaCas composite films modified by transglutaminase. Scientific Research and Essays, 9(9), 391–399.

    Article  Google Scholar 

  • Ramirezsuarez, J. (2003). Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures*1. Meat Science, 65(2), 899–907.

    Article  CAS  Google Scholar 

  • Rhim, J.-W., Gennadios, A., Weller, C. L., Carole, C., & Hanna, M. A. (1998). Soy protein isolate–dialdehyde starch films1. Industrial Crops and Products, 8(3), 195–203.

    Article  CAS  Google Scholar 

  • Richards, R. B. (1951). Polyethylene-structure, crystallinity and properties. Journal of Applied Chemistry, 1(8), 370–376.

    Article  CAS  Google Scholar 

  • Rivero, S., García, M. A., & Pinotti, A. (2010). Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science & Emerging Technologies., 11(2), 369–375.

    Article  CAS  Google Scholar 

  • Shilpashree, B. G., Arora, S., Sharma, V., & Singh, A. K. (2015) Preparation of succinylated sodium caseinate–iron complex by adopting ultrafiltration technology: a novel food fortificant. Innovative Food Science & Emerging Technologies, 32, 165–171.

  • Song, C.-L., & Zhao, X.-H. (2014). The preparation of an oligochitosan-glycosylated and cross-linked caseinate obtained by a microbial transglutaminase and its functional properties. International Journal of Dairy Technology, 67(1), 110–116.

    Article  CAS  Google Scholar 

  • Subirade, M., Kelly, I., Guéguen, J., & Pézolet, M. (1998). Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films. International Journal of Biological Macromolecules, 23(4), 241–249.

    Article  CAS  Google Scholar 

  • Surewicz, W. K., Mantsch, H. H., & Chapman, D. (1993). Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry, 32(2), 389–394.

    Article  CAS  Google Scholar 

  • Tang, C. H., Wu, H., Yu, H. P., Li, L., Chen, Z., & Yang, X. Q. (2006a). Coagulation and gelation of soy protein isolates induced by microbial transglutaminas. Journal of Food Biochemistry, 30(1), 35–55.

    Article  CAS  Google Scholar 

  • Tang, C. H., Chen, Z., Li, L., & Yang, X.-Q. (2006b). Effects of transglutaminase treatment on the thermal properties of soy protein isolates. Food Research International, 39(6), 704–711.

    Article  CAS  Google Scholar 

  • Tian, H., Wang, Y., Zhang, L., Quan, C., & Zhang, X. (2010). Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Industrial Crops and Products, 32(1), 13–20.

    Article  CAS  Google Scholar 

  • William, H., & George, W. (2000). Official methods of analysis of AOAC international. USA, AOAC International Suite, 500, 481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujie Su or Yanjun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, N., Gu, L., Li, J. et al. Films Based on Egg White Protein and Succinylated Casein Cross-Linked with Transglutaminase. Food Bioprocess Technol 10, 1422–1430 (2017). https://doi.org/10.1007/s11947-017-1901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1901-8

Keywords

Navigation