Skip to main content
Log in

Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy

  • Hypertension and the Heart (B Upadhya, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Given that the life expectancy and the burden of hypertension are projected to increase over the next decade, hypertensive heart disease (HHD) may be expected to play an even more central role in the pathophysiology of cardiovascular disease (CVD). A broader understanding of the features and underlying mechanisms that constitute HHD therefore is of paramount importance.

Recent Findings

HHD is a condition that arises as a result of elevated blood pressure and constitutes a key underlying mechanism for cardiovascular morbidity and mortality. Historically, studies investigating HHD have primarily focused on left ventricular (LV) hypertrophy (LVH), but it is increasingly apparent that HHD encompasses a range of target-organ damage beyond LVH, including other cardiovascular structural and functional adaptations that may occur separately or concomitantly. HHD is characterized by micro- and macroscopic myocardial alterations, structural phenotypic adaptations, and functional changes that include cardiac fibrosis, and the remodeling of the atria and ventricles and the arterial system. In this review, we summarize the structural and functional alterations in the cardiac and vascular system that constitute HHD and underscore their underlying pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528. https://doi.org/10.1161/cir.0000000000000659.

    Article  PubMed  Google Scholar 

  2. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D’Agostino RB, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. Jama. 2002;287(8):1003–10. https://doi.org/10.1001/jama.287.8.1003.

    Article  PubMed  Google Scholar 

  3. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA. 2017;317(2):165–82. https://doi.org/10.1001/jama.2016.19043.

    Article  PubMed  Google Scholar 

  4. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67. https://doi.org/10.1016/s0140-6736(15)01225-8.

    Article  PubMed  Google Scholar 

  5. •• McManus DD, Xanthakis V, Sullivan LM, Zachariah J, Aragam J, Larson MG, et al. Longitudinal tracking of left atrial diameter over the adult life course: clinical correlates in the community. Circulation. 121(5):2010, 667–74. https://doi.org/10.1161/circulationaha.109.885806This study showed the longitudinal association between high blood pressure and left atrial size.

  6. •• Turkbey EB, Nacif MS, Guo M, RL MC, Teixeira PB, Bild DE, et al. Prevalence and correlates of myocardial scar in a US cohort. JAMA. 2015;314(18):1945–54. https://doi.org/10.1001/jama.2015.14849This study reported the prevalence of subclinical myocardial scar and its association with high blood pressure in a multiethnic US population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. •• Lam CS, Xanthakis V, Sullivan LM, Lieb W, Aragam J, Redfield MM, et al. Aortic root remodeling over the adult life course: longitudinal data from the Framingham Heart Study. Circulation. 2010;122(9):884–90. https://doi.org/10.1161/circulationaha.110.937839This study showed the life course of echocardiography-determined aortic size and its long-term correlation with blood pressure.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ohyama Y, Teixido-Tura G, Ambale-Venkatesh B, Noda C, Chugh AR, Liu CY, et al. Ten-year longitudinal change in aortic stiffness assessed by cardiac MRI in the second half of the human lifespan: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2016;17(9):1044–53. https://doi.org/10.1093/ehjci/jev332.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Teixido-Tura G, Almeida AL, Choi EY, Gjesdal O, Jacobs DR Jr, Dietz HC, et al. Determinants of aortic root dilatation and reference values among young adults over a 20-year period: Coronary Artery Risk Development in Young Adults Study. Hypertension. 2015;66(1):23–9. https://doi.org/10.1161/hypertensionaha.115.05156.

    Article  CAS  PubMed  Google Scholar 

  10. •• Gidding SS, Liu K, Colangelo LA, Cook NL, Goff DC, Glasser SP, et al. Longitudinal determinants of left ventricular mass and geometry: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Circ Cardiovasc Imaging. 2013;6(5):769–75. https://doi.org/10.1161/circimaging.112.000450This report showed that blood pressure levels in young adults was associated with LV mass and abnormal LV geometry.

    Article  PubMed  Google Scholar 

  11. Niiranen TJ, Kalesan B, Mitchell GF, Vasan RS. Relative contributions of pulse pressure and arterial stiffness to cardiovascular disease. Hypertension. 2019;73(3):712–7. https://doi.org/10.1161/hypertensionaha.118.12289.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng S, McCabe EL, Larson MG, Merz AA, Osypiuk E, Lehman BT, et al. Distinct aspects of left ventricular mechanical function are differentially associated with cardiovascular outcomes and all-cause mortality in the community. J Am Heart Assoc. 2015;4(10):e002071. https://doi.org/10.1161/jaha.115.002071.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Armstrong AC, Jacobs DR Jr, Gidding SS, Colangelo LA, Gjesdal O, Lewis CE, et al. Framingham score and LV mass predict events in young adults: CARDIA study. Int J Cardiol. 2014;172(2):350–5. https://doi.org/10.1016/j.ijcard.2014.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Armstrong AC, Liu K, Lewis CE, Sidney S, Colangelo LA, Kishi S, et al. Left atrial dimension and traditional cardiovascular risk factors predict 20-year clinical cardiovascular events in young healthy adults: the CARDIA study. Eur Heart J Cardiovasc Imaging. 2014;15(8):893–9. https://doi.org/10.1093/ehjci/jeu018.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lam CS, Gona P, Larson MG, Aragam J, Lee DS, Mitchell GF, et al. Aortic root remodeling and risk of heart failure in the Framingham Heart study. JACC Heart Fail. 2013;1(1):79–83. https://doi.org/10.1016/j.jchf.2012.10.003.

    Article  PubMed  Google Scholar 

  16. Kishi S, Gidding SS, Reis JP, Colangelo LA, Venkatesh BA, Armstrong AC, et al. Association of insulin resistance and glycemic metabolic abnormalities with lv structure and function in middle age: the CARDIA Study. JACC Cardiovasc Imaging. 2017;10(2):105–14. https://doi.org/10.1016/j.jcmg.2016.02.033.

    Article  PubMed  Google Scholar 

  17. Obas V, Vasan RS. The aging heart. Clin Sci (Lond). 2018;132(13):1367–82. https://doi.org/10.1042/cs20171156.

    Article  CAS  Google Scholar 

  18. Andersson C, Vasan RS. Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol. 2018;15(4):230–40. https://doi.org/10.1038/nrcardio.2017.154.

    Article  PubMed  Google Scholar 

  19. Zemrak F, Ambale-Venkatesh B, Captur G, Chrispin J, Chamera E, Habibi M, et al. Left atrial structure in relationship to age, sex, ethnicity, and cardiovascular risk factors: MESA (Multi-Ethnic Study of Atherosclerosis). Circ Cardiovasc Imaging. 2017;10(2). https://doi.org/10.1161/circimaging.116.005379.

  20. Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level--risk factors, screening, and outcomes. Nat Rev Cardiol. 2011;8(12):673–85. https://doi.org/10.1038/nrcardio.2011.154.

    Article  PubMed  Google Scholar 

  21. Humeres C, Frangogiannis NG. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl Sci. 2019;4(3):449–67. https://doi.org/10.1016/j.jacbts.2019.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol. 2000;15(4):264–72.

    Article  CAS  PubMed  Google Scholar 

  23. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16(7):1031–41. https://doi.org/10.1097/00004872-199816070-00018.

    Article  CAS  PubMed  Google Scholar 

  24. Frangogiannis NG. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Asp Med. 2019;65:70–99. https://doi.org/10.1016/j.mam.2018.07.001.

    Article  CAS  Google Scholar 

  25. • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74. https://doi.org/10.1007/s00018-013-1349-6This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis.

    Article  CAS  PubMed  Google Scholar 

  26. Ambale Venkatesh B, Volpe GJ, Donekal S, Mewton N, Liu CY, Shea S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the Multi-Ethnic Study of Atherosclerosis study. Hypertension. 2014;64(3):508–15. https://doi.org/10.1161/hypertensionaha.114.03697.

    Article  CAS  PubMed  Google Scholar 

  27. Donekal S, Venkatesh BA, Liu YC, Liu CY, Yoneyama K, Wu CO, et al. Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: the Multi-Ethnic Study of Atherosclerosis (MESA) study. Circ Cardiovasc Imaging. 2014;7(2):292–302. https://doi.org/10.1161/circimaging.113.001073.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363(6):552–63. https://doi.org/10.1056/NEJMoa1002659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moreo A, Ambrosio G, De Chiara B, Pu M, Tran T, Mauri F, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging. 2009;2(6):437–43. https://doi.org/10.1161/circimaging.108.838367.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation. 1995;91(1):161–70. https://doi.org/10.1161/01.cir.91.1.161.

    Article  CAS  PubMed  Google Scholar 

  31. Aoki T, Fukumoto Y, Sugimura K, Oikawa M, Satoh K, Nakano M, et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. -Comparison between preserved and reduced ejection fraction heart failure. Circ J. 2011;75(11):2605–13.

    Article  CAS  PubMed  Google Scholar 

  32. Roy C, Slimani A, de Meester C, Amzulescu M, Pasquet A, Vancraeynest D, et al. Associations and prognostic significance of diffuse myocardial fibrosis by cardiovascular magnetic resonance in heart failure with preserved ejection fraction. J Cardiovasc Magn Reson. 2018;20(1):55. https://doi.org/10.1186/s12968-018-0477-4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977–85. https://doi.org/10.1016/j.jacc.2006.07.049.

    Article  PubMed  Google Scholar 

  34. Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118(10):1011–20. https://doi.org/10.1161/circulationaha.107.727826.

    Article  PubMed  PubMed Central  Google Scholar 

  35. •• Ambale-Venkatesh B, Liu CY, Liu YC, Donekal S, Ohyama Y, Sharma RK, et al. Association of myocardial fibrosis and cardiovascular events: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2019;20(2):168–76. https://doi.org/10.1093/ehjci/jey140This CMR study showed that fibrosis was related to cardiovascular disease.

    Article  PubMed  Google Scholar 

  36. Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, et al. Prognostic significance of quantitative assessment of focal myocardial fibrosis in patients with heart failure with preserved ejection fraction. Int J Cardiol. 2015;191:314–9. https://doi.org/10.1016/j.ijcard.2015.05.048.

    Article  PubMed  Google Scholar 

  37. Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR, et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. 2015;4(12). https://doi.org/10.1161/jaha.115.002613.

  38. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56. https://doi.org/10.1016/j.jacc.2012.04.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanagala P, Cheng ASH, Singh A, Khan JN, Gulsin GS, Patel P, et al. Relationship between focal and diffuse fibrosis assessed by CMR and clinical outcomes in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2018.11.031.

  40. Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios. 1980;28(109):41–61.

    CAS  PubMed  Google Scholar 

  41. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40–51. https://doi.org/10.1016/j.cardiores.2004.08.020.

    Article  CAS  PubMed  Google Scholar 

  42. Vliegen HW, van der Laarse A, Cornelisse CJ, Eulderink F. Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation. Eur Heart J. 1991;12(4):488–94. https://doi.org/10.1093/oxfordjournals.eurheartj.a059928.

    Article  CAS  PubMed  Google Scholar 

  43. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010;48(3):504–11. https://doi.org/10.1016/j.yjmcc.2009.07.015.

    Article  CAS  PubMed  Google Scholar 

  44. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117(3):568–75. https://doi.org/10.1172/jci31044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Chen H, Seth A, McCulloch CA. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol. 2003;285(5):H1871–81. https://doi.org/10.1152/ajpheart.00387.2003.

    Article  CAS  PubMed  Google Scholar 

  46. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105(12):1164–76. https://doi.org/10.1161/circresaha.109.209809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res. 1993;27(3):341–8. https://doi.org/10.1093/cvr/27.3.341.

    Article  CAS  PubMed  Google Scholar 

  48. Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45:657–87. https://doi.org/10.1146/annurev.pharmtox.45.120403.095802.

    Article  CAS  PubMed  Google Scholar 

  49. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118(6):1021–40. https://doi.org/10.1161/circresaha.115.306565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13(7):1637–52. https://doi.org/10.1016/0735-1097(89)90360-4.

    Article  CAS  PubMed  Google Scholar 

  51. Alvarez D, Briassouli P, Clancy RM, Zavadil J, Reed JH, Abellar RG, et al. A novel role of endothelin-1 in linking Toll-like receptor 7-mediated inflammation to fibrosis in congenital heart block. J Biol Chem. 2011;286(35):30444–54. https://doi.org/10.1074/jbc.M111.263657.

  52. Feng B, Chen S, Gordon AD, Chakrabarti S. miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 2017;105:70–6. https://doi.org/10.1016/j.yjmcc.2017.03.002.

    Article  CAS  PubMed  Google Scholar 

  53. Johannes L, Jacob R, Leffler H. Galectins at a glance. J Cell Sci. 2018;131(9). https://doi.org/10.1242/jcs.208884.

  54. Borg KT, Burgess W, Terracio L, Borg TK. Expression of metalloproteases by cardiac myocytes and fibroblasts in vitro. Cardiovasc Pathol. 1997;6(5):261–9. https://doi.org/10.1016/s1054-8807(96)00138-x.

    Article  CAS  PubMed  Google Scholar 

  55. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Phys Cell Phys. 2001;280(1):C53–60. https://doi.org/10.1152/ajpcell.2001.280.1.C53.

    Article  CAS  Google Scholar 

  56. Honold L, Nahrendorf M. Resident and monocyte-derived macrophages in cardiovascular disease. Circ Res. 2018;122(1):113–27. https://doi.org/10.1161/circresaha.117.311071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–62. https://doi.org/10.1016/j.immuni.2016.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luitel H, Sydykov A, Schymura Y, Mamazhakypov A, Janssen W, Pradhan K, et al. Pressure overload leads to an increased accumulation and activity of mast cells in the right ventricle. Phys Rep. 2017;5(6). https://doi.org/10.14814/phy2.13146.

  59. Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, et al. Pivotal role of cardiomyocyte TGF-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest. 2011;121(6):2301–12. https://doi.org/10.1172/jci44824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147(2):325–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57(8):891–903. https://doi.org/10.1016/j.jacc.2010.11.013.

    Article  PubMed  Google Scholar 

  62. Brooks A, Schinde V, Bateman AC, Gallagher PJ. Interstitial fibrosis in the dilated non-ischaemic myocardium. Heart. 2003;89(10):1255–6. https://doi.org/10.1136/heart.89.10.1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83(6):1849–65. https://doi.org/10.1161/01.cir.83.6.1849.

    Article  CAS  PubMed  Google Scholar 

  64. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981–8. https://doi.org/10.1161/01.cir.101.25.2981.

    Article  CAS  PubMed  Google Scholar 

  65. Page E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Phys. 1978;235(5):C147–58. https://doi.org/10.1152/ajpcell.1978.235.5.C147.

    Article  CAS  Google Scholar 

  66. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.

    Article  CAS  PubMed  Google Scholar 

  67. Stienen GJ. Pathomechanisms in heart failure: the contractile connection. J Muscle Res Cell Motil. 2015;36(1):47–60. https://doi.org/10.1007/s10974-014-9395-8.

    Article  CAS  PubMed  Google Scholar 

  68. Diez J. Towards a new paradigm about hypertensive heart disease. Med Clin North Am. 2009;93(3):637–45. https://doi.org/10.1016/j.mcna.2009.02.002.

    Article  PubMed  Google Scholar 

  69. Young CN. Endoplasmic reticulum stress in the pathogenesis of hypertension. Exp Physiol. 2017;102(8):869–84. https://doi.org/10.1113/ep086274.

    Article  CAS  PubMed  Google Scholar 

  70. Bers DM, Shannon TR. Calcium movements inside the sarcoplasmic reticulum of cardiac myocytes. J Mol Cell Cardiol. 2013;58:59–66. https://doi.org/10.1016/j.yjmcc.2013.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao TV, Li Y, Liu X, Xia S, Shi P, Li L, et al. ATP release drives heightened immune responses associated with hypertension. Sci Immunol. 2019;4(36). https://doi.org/10.1126/sciimmunol.aau6426.

  72. Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385(9970):812–24. https://doi.org/10.1016/s0140-6736(14)61889-4.

    Article  PubMed  Google Scholar 

  73. Eisner DA, Caldwell JL, Kistamas K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121(2):181–95. https://doi.org/10.1161/circresaha.117.310230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11. https://doi.org/10.1161/circulationaha.109.886655.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, et al. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4(11). https://doi.org/10.1161/jaha.115.002189.

  76. Ohyama Y, Ambale-Venkatesh B, Noda C, Kim JY, Tanami Y, Teixido-Tura G, et al. Aortic arch pulse wave velocity assessed by magnetic resonance imaging as a predictor of incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis). Hypertension. 2017;70(3):524–30. https://doi.org/10.1161/hypertensionaha.116.08749.

    Article  CAS  PubMed  Google Scholar 

  77. Redheuil A, Wu CO, Kachenoura N, Ohyama Y, Yan RT, Bertoni AG, et al. Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: the MESA study. J Am Coll Cardiol. 2014;64(24):2619–29. https://doi.org/10.1016/j.jacc.2014.09.060.

    Article  PubMed  PubMed Central  Google Scholar 

  78. •• Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636–46. https://doi.org/10.1016/j.jacc.2013.09.063This meta-analysis demonstrated that CFPWV is an important risk factor for cardiovascular disease.

    Article  PubMed  Google Scholar 

  79. Ohyama Y, Ambale-Venkatesh B, Noda C, Chugh Atul R, Teixido-Tura G, Kim J-Y, et al. Association of aortic stiffness with left ventricular remodeling and reduced left ventricular function measured by magnetic resonance imaging. Circ Cardiovasc Imaging. 2016;9(7):e004426. https://doi.org/10.1161/CIRCIMAGING.115.004426.

    Article  PubMed  Google Scholar 

  80. Nwabuo CC, Moreira HT, Vasconcellos HD, Ambale-Venkatesh B, Yoneyama K, Ohyama Y, et al. Association of aortic root dilation from early adulthood to middle age with cardiac structure and function: the CARDIA Study. J Am Soc Echocardiogr. 2017;30(12):1172–9. https://doi.org/10.1016/j.echo.2017.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  81. •• Vasan RS, Short MI, Niiranen TJ, Xanthakis V, DeCarli C, Cheng S, et al. Interrelations between arterial stiffness, target organ damage, and cardiovascular disease outcomes. J Am Heart Assoc. 2019;8(14):e012141. https://doi.org/10.1161/jaha.119.012141This study provided further insights into interactions between arterial stiffness and left ventricular hypertrophy and their prognostic implications for outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lakatta EG, Wang M, Najjar SS. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am. 2009;93(3):583–604, Table of Contents. https://doi.org/10.1016/j.mcna.2009.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116(6):1007–21. https://doi.org/10.1161/circresaha.116.303596.

    Article  CAS  PubMed  Google Scholar 

  84. • Mitchell GF. Arterial stiffness and hypertension: chicken or egg? Hypertension. 2014;64(2):210–4. https://doi.org/10.1161/hypertensionaha.114.03449This review article discusses the bidirectional interaction between hypertension and arterial stiffness.

    Article  CAS  PubMed  Google Scholar 

  85. Levy BI, Benessiano J, Poitevin P, Safar ME. Endothelium-dependent mechanical properties of the carotid artery in WKY and SHR. Role of angiotensin converting enzyme inhibition. Circ Res. 1990;66(2):321–8. https://doi.org/10.1161/01.res.66.2.321.

    Article  CAS  PubMed  Google Scholar 

  86. Yannoutsos A, Levy BI, Safar ME, Slama G, Blacher J. Pathophysiology of hyp ertension: interactions between macro and microvascular alterations through endothelial dysfunction. J Hypertens. 2014;32(2):216–24. https://doi.org/10.1097/hjh.0000000000000021.

    Article  CAS  PubMed  Google Scholar 

  87. Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65(2):252–6. https://doi.org/10.1161/hypertensionaha.114.03617.

    Article  CAS  PubMed  Google Scholar 

  88. Sehgel NL, Zhu Y, Sun Z, Trzeciakowski JP, Hong Z, Hunter WC, et al. Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. Am J Physiol Heart Circ Physiol. 2013;305(9):H1281–7. https://doi.org/10.1152/ajpheart.00232.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Niiranen TJ, Lyass A, Larson MG, Hamburg NM, Benjamin EJ, Mitchell GF, et al. Prevalence, correlates, and prognosis of healthy vascular aging in a Western community-dwelling cohort: the Framingham Heart Study. Hypertension. 2017;70(2):267–74. https://doi.org/10.1161/hypertensionaha.117.09026.

    Article  CAS  PubMed  Google Scholar 

  90. Safar ME, Asmar R, Benetos A, Blacher J, Boutouyrie P, Lacolley P, et al. Interaction between hypertension and arterial stiffness. Hypertension. 2018;72(4):796–805. https://doi.org/10.1161/hypertensionaha.118.11212.

    Article  CAS  PubMed  Google Scholar 

  91. Li JK. Arterial wall properties in men and women: hemodynamic analysis and clinical implications. Adv Exp Med Biol. 2018;1065:291–306. https://doi.org/10.1007/978-3-319-77932-4_19.

    Article  PubMed  Google Scholar 

  92. Mitchell GF. Arterial stiffness: insights from Framingham and Iceland. Curr Opin Nephrol Hypertens. 2015;24(1):1–7. https://doi.org/10.1097/mnh.0000000000000092.

    Article  PubMed  Google Scholar 

  93. Weisbrod RM, Shiang T, Al Sayah L, Fry JL, Bajpai S, Reinhart-King CA, et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension. 2013;62(6):1105–10. https://doi.org/10.1161/hypertensionaha.113.01744.

    Article  CAS  PubMed  Google Scholar 

  94. •• Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308(9):875–81. https://doi.org/10.1001/2012.jama.10503This important study demonstrated the bidirectional association between arterial stiffness and hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Najjar SS, Scuteri A, Shetty V, Wright JG, Muller DC, Fleg JL, et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51(14):1377–83. https://doi.org/10.1016/j.jacc.2007.10.065.

    Article  PubMed  PubMed Central  Google Scholar 

  96. AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension. 2013;62(5):934–41. https://doi.org/10.1161/hypertensionaha.113.01445.

    Article  CAS  PubMed  Google Scholar 

  97. Le VP, Knutsen RH, Mecham RP, Wagenseil JE. Decreased aortic diameter and compliance precedes blood pressure increases in postnatal development of elastin-insufficient mice. Am J Physiol Heart Circ Physiol. 2011;301(1):H221–9. https://doi.org/10.1152/ajpheart.00119.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb. 1993;13(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  99. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70(4):921–61. https://doi.org/10.1152/physrev.1990.70.4.921.

    Article  CAS  PubMed  Google Scholar 

  100. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104(6):735–40. https://doi.org/10.1161/hc3101.091158.

    Article  CAS  PubMed  Google Scholar 

  101. Cooper LL, Palmisano JN, Benjamin EJ, Larson MG, Vasan RS, Mitchell GF, et al. Microvascular function contributes to the relation between aortic stiffness and cardiovascular events: the Framingham Heart Study. Circ Cardiovasc Imaging. 2016;9(12). https://doi.org/10.1161/circimaging.116.004979.

  102. Laurent S, Briet M, Boutouyrie P. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension. 2009;54(2):388–92. https://doi.org/10.1161/hypertensionaha.109.133116.

    Article  CAS  PubMed  Google Scholar 

  103. Thomas L, Abhayaratna WP. Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance. JACC Cardiovasc Imaging. 2017;10(1):65–77. https://doi.org/10.1016/j.jcmg.2016.11.003.

    Article  PubMed  Google Scholar 

  104. Gerdts E. Left atrial enlargement: a prevalent marker of hypertensive heart disease. Blood Press. 2012;21(2):71–2. https://doi.org/10.3109/08037051.2012.677511.

    Article  PubMed  Google Scholar 

  105. Su G, Cao H, Xu S, Lu Y, Shuai X, Sun Y, et al. Left atrial enlargement in the early stage of hypertensive heart disease: a common but ignored condition. J Clin Hypertens (Greenwich). 2014;16(3):192–7. https://doi.org/10.1111/jch.12282.

    Article  Google Scholar 

  106. Armstrong AC, Gidding SS, Colangelo LA, Kishi S, Liu K, Sidney S, et al. Association of early adult modifiable cardiovascular risk factors with left atrial size over a 20-year follow-up period: the CARDIA study. BMJ Open. 2014;4(1):e004001. https://doi.org/10.1136/bmjopen-2013-004001.

    Article  PubMed  PubMed Central  Google Scholar 

  107. •• Vasconcellos HD, Moreira HT, Ciuffo L, Nwabuo CC, Yared GS, Ambale-Venkatesh B, et al. Cumulative blood pressure from early adulthood to middle age is associated with left atrial remodelling and subclinical dysfunction assessed by three-dimensional echocardiography: a prospective post hoc analysis from the coronary artery risk development in young adults study. Eur Heart J Cardiovasc Imaging. 2018;19(9):977–84. https://doi.org/10.1093/ehjci/jey086This three-dimensional echocardiography study showed that cumulative hemodynamic load across early adulthood was independently associated with higher LA phasic volumes, lower LA conduit function, and higher LA active function.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sardana M, Nah G, Tsao CW, Ogunsua AA, Vittinghoff E, Thomas RC, et al. Clinical and echocardiographic correlates of left atrial function index: the Framingham Offspring Study. J Am Soc Echocardiogr. 2017;30(9):904–12.e2. https://doi.org/10.1016/j.echo.2017.05.013.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Masaidi M, Cuspidi C, Negri F, Giudici V, Sala C, Zanchetti A, et al. Left and right ventricular structural changes in obese hypertensives. Blood Press. 2009;18(1-2):23–9. https://doi.org/10.1080/08037050902850226.

    Article  PubMed  Google Scholar 

  110. Piotrowski G, Banach M, Gerdts E, Mikhailidis DP, Hannam S, Gawor R, et al. Left atrial size in hypertension and stroke. J Hypertens. 2011;29(10):1988–93. https://doi.org/10.1097/HJH.0b013e32834a98db.

    Article  CAS  PubMed  Google Scholar 

  111. Cuspidi C, Negri F, Muiesan ML, Grandi AM, Lonati L, Ganau A, et al. Indexing cardiac parameters in echocardiographic practice: do estimates depend on how weight and height have been assessed? A study on left atrial dilatation. J Am Soc Hypertens. 2011;5(3):177–83. https://doi.org/10.1016/j.jash.2011.02.003.

    Article  PubMed  Google Scholar 

  112. Chillo P, Lwakatare J, Rieck AE, Lutale J, Gerdts E. Prevalence and covariates of abnormal left ventricular geometry in never-treated hypertensive patients in Tanzania. Blood Press. 2014;23(1):31–8. https://doi.org/10.3109/08037051.2013.791415.

    Article  PubMed  Google Scholar 

  113. Mancia G, Carugo S, Grassi G, Lanzarotti A, Schiavina R, Cesana G, et al. Prevalence of left ventricular hypertrophy in hypertensive patients without and with blood pressure control: data from the PAMELA population. Pressioni Arteriose Monitorate E Loro Associazioni. Hypertension. 2002;39(3):744–9. https://doi.org/10.1161/hy0302.104669.

    Article  CAS  PubMed  Google Scholar 

  114. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19(7):1550–8. https://doi.org/10.1016/0735-1097(92)90617-v.

    Article  CAS  PubMed  Google Scholar 

  115. de Simone G, Kitzman DW, Chinali M, Oberman A, Hopkins PN, Rao DC, et al. Left ventricular concentric geometry is associated with impaired relaxation in hypertension: the HyperGEN study. Eur Heart J. 2005;26(10):1039–45. https://doi.org/10.1093/eurheartj/ehi019.

    Article  PubMed  Google Scholar 

  116. Ojji D, Atherton J, Sliwa K, Alfa J, Ngabea M, Opie L. Left ventricular systolic dysfunction in asymptomatic black hypertensive subjects. Am J Hypertens. 2015;28(7):924–9. https://doi.org/10.1093/ajh/hpu247.

    Article  PubMed  Google Scholar 

  117. Nishikage T, Nakai H, Lang RM, Takeuchi M. Subclinical left ventricular longitudinal systolic dysfunction in hypertension with no evidence of heart failure. Circ J. 2008;72(2):189–94. https://doi.org/10.1253/circj.72.189.

    Article  PubMed  Google Scholar 

  118. Verdecchia P, Angeli F, Gattobigio R, Sardone M, Porcellati C. Asymptomatic left ventricular systolic dysfunction in essential hypertension: prevalence, determinants, and prognostic value. Hypertension. 2005;45(3):412–8. https://doi.org/10.1161/01.HYP.0000154822.37141.f6.

    Article  CAS  PubMed  Google Scholar 

  119. Santos AB, Gupta DK, Bello NA, Gori M, Claggett B, Fuchs FD, et al. Prehypertension is associated with abnormalities of cardiac structure and function in the Atherosclerosis Risk in Communities Study. Am J Hypertens. 2016;29(5):568–74. https://doi.org/10.1093/ajh/hpv156.

    Article  CAS  PubMed  Google Scholar 

  120. Dini FL, Galderisi M, Nistri S, Buralli S, Ballo P, Mele D, et al. Abnormal left ventricular longitudinal function assessed by echocardiographic and tissue Doppler imaging is a powerful predictor of diastolic dysfunction in hypertensive patients: the SPHERE study. Int J Cardiol. 2013;168(4):3351–8. https://doi.org/10.1016/j.ijcard.2013.04.122.

    Article  PubMed  Google Scholar 

  121. •• Karaye KM, Habib AG, Mohammed S, Rabiu M, Shehu MN. Assessment of right ventricular systolic function using tricuspid annular-plane systolic excursion in Nigerians with systemic hypertension. Cardiovasc J Afr. 2010;21(4):186–90 This study among others underscored that right chamber abnormalities are not uncommon in hypertensive heart disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tadic MV, Ivanovic BA, Celic VP. Does a nondipping pattern impact the right ventricle in hypertensive patients? Blood Press Monit. 2012;17(2):47–54. https://doi.org/10.1097/MBP.0b013e32835136ce.

    Article  PubMed  Google Scholar 

  123. Cuspidi C, Negri F, Giudici V, Valerio C, Meani S, Sala C, et al. Prevalence and clinical correlates of right ventricular hypertrophy in essential hypertension. J Hypertens. 2009;27(4):854–60. https://doi.org/10.1097/HJH.0b013e328324eda0.

    Article  CAS  PubMed  Google Scholar 

  124. Akturk E, Ermis N, Yagmur J, Acikgoz N, Kurtoglu E, Cansel M, et al. Early left atrial mechanics and volume abnormalities in subjects with prehypertension: a real time three-dimensional echocardiography study. Echocardiography. 2012;29(10):1211–7. https://doi.org/10.1111/j.1540-8175.2012.01795.x.

    Article  PubMed  Google Scholar 

  125. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement in hypertension: a systematic review of recent clinical studies. Am J Hypertens. 2013;26(4):456–64. https://doi.org/10.1093/ajh/hpt001.

    Article  PubMed  Google Scholar 

  126. Habibi M, Chahal H, Opdahl A, Gjesdal O, Helle-Valle TM, Heckbert SR, et al. Association of CMR-measured LA function with heart failure development: results from the MESA study. JACC Cardiovasc Imaging. 2014;7(6):570–9. https://doi.org/10.1016/j.jcmg.2014.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wu VC, Takeuchi M, Kuwaki H, Iwataki M, Nagata Y, Otani K, et al. Prognostic value of LA volumes assessed by transthoracic 3D echocardiography: comparison with 2D echocardiography. JACC Cardiovasc Imaging. 2013;6(10):1025–35. https://doi.org/10.1016/j.jcmg.2013.08.002.

    Article  PubMed  Google Scholar 

  128. Sardana M, Lessard D, Tsao CW, Parikh NI, Barton BA, Nah G, et al. Association of left atrial function index with atrial fibrillation and cardiovascular disease: the Framingham Offspring Study. J Am Heart Assoc. 2018;7(7). https://doi.org/10.1161/jaha.117.008435.

  129. Lim DJ, Ambale-Ventakesh B, Ostovaneh MR, Zghaib T, Ashikaga H, Wu C, et al. Change in left atrial function predicts incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J Cardiovasc Imaging. 2019;20(9):979–87. https://doi.org/10.1093/ehjci/jez176.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Habibi M, Samiei S, Ambale Venkatesh B, Opdahl A, Helle-Valle TM, Zareian M, et al. Cardiac magnetic resonance-measured left atrial volume and function and incident atrial fibrillation: results from MESA (Multi-Ethnic Study of Atherosclerosis). Circ Cardiovasc Imaging. 2016;9(8). https://doi.org/10.1161/circimaging.115.004299.

  131. Markman TM, Habibi M, Venkatesh BA, Zareian M, Wu C, Heckbert SR, et al. Association of left atrial structure and function and incident cardiovascular disease in patients with diabetes mellitus: results from multi-ethnic study of atherosclerosis (MESA). Eur Heart J Cardiovasc Imaging. 2017;18(10):1138–44. https://doi.org/10.1093/ehjci/jew332.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gupta S, Matulevicius SA, Ayers CR, Berry JD, Patel PC, Markham DW, et al. Left atrial structure and function and clinical outcomes in the general population. Eur Heart J. 2013;34(4):278–85. https://doi.org/10.1093/eurheartj/ehs188.

    Article  PubMed  Google Scholar 

  133. Ho SY, Cabrera JA, Sanchez-Quintana D. Left atrial anatomy revisited. Circ Arrhythm Electrophysiol. 2012;5(1):220–8. https://doi.org/10.1161/circep.111.962720.

    Article  PubMed  Google Scholar 

  134. To AC, Flamm SD, Marwick TH, Klein AL. Clinical utility of multimodality LA imaging: assessment of size, function, and structure. JACC Cardiovasc Imaging. 2011;4(7):788–98. https://doi.org/10.1016/j.jcmg.2011.02.018.

    Article  PubMed  Google Scholar 

  135. Seward JB, Hebl VB. Left atrial anatomy and physiology: echo/Doppler assessment. Curr Opin Cardiol. 2014;29(5):403–7. https://doi.org/10.1097/hco.0000000000000089.

    Article  PubMed  Google Scholar 

  136. Mehrzad R, Rajab M, Spodick DH. The three integrated phases of left atrial macrophysiology and their interactions. Int J Mol Sci. 2014;15(9):15146–60. https://doi.org/10.3390/ijms150915146.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pagel PS, Kehl F, Gare M, Hettrick DA, Kersten JR, Warltier DC. Mechanical function of the left atrium: new insights based on analysis of pressure-volume relations and Doppler echocardiography. Anesthesiology. 2003;98(4):975–94. https://doi.org/10.1097/00000542-200304000-00027.

    Article  PubMed  Google Scholar 

  138. Suga H. Importance of atrial compliance in cardiac performance. Circ Res. 1974;35(1):39–43. https://doi.org/10.1161/01.res.35.1.39.

    Article  CAS  PubMed  Google Scholar 

  139. Vieira MJ, Teixeira R, Goncalves L, Gersh BJ. Left atrial mechanics: echocardiographic assessment and clinical implications. J Am Soc Echocardiogr. 2014;27(5):463–78. https://doi.org/10.1016/j.echo.2014.01.021.

    Article  PubMed  Google Scholar 

  140. Boyd AC, Schiller NB, Leung D, Ross DL, Thomas L. Atrial dilation and altered function are mediated by age and diastolic function but not before the eighth decade. JACC Cardiovasc Imaging. 2011;4(3):234–42. https://doi.org/10.1016/j.jcmg.2010.11.018.

    Article  PubMed  Google Scholar 

  141. Kallergis EM, Manios EG, Kanoupakis EM, Mavrakis HE, Arfanakis DA, Maliaraki NE, et al. Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: biochemical assessment of collagen type-I turnover. J Am Coll Cardiol. 2008;52(3):211–5. https://doi.org/10.1016/j.jacc.2008.03.045.

    Article  CAS  PubMed  Google Scholar 

  142. Habibi M, Lima JA, Khurram IM, Zimmerman SL, Zipunnikov V, Fukumoto K, et al. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: cardiac magnetic resonance study. Circ Cardiovasc Imaging. 2015;8(2):e002769. https://doi.org/10.1161/circimaging.114.002769.

    Article  PubMed  Google Scholar 

  143. Imai M, Ambale Venkatesh B, Samiei S, Donekal S, Habibi M, Armstrong AC, et al. Multi-ethnic study of atherosclerosis: association between left atrial function using tissue tracking from cine MR imaging and myocardial fibrosis. Radiology. 2014;273(3):703–13. https://doi.org/10.1148/radiol.14131971.

    Article  PubMed  Google Scholar 

  144. Rosca M, Lancellotti P, Popescu BA, Pierard LA. Left atrial function: pathophysiology, echocardiographic assessment, and clinical applications. Heart. 2011;97(23):1982–9. https://doi.org/10.1136/heartjnl-2011-300069.

    Article  PubMed  Google Scholar 

  145. Thomas L, Marwick TH, Popescu BA, Donal E, Badano LP. Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(15):1961–77. https://doi.org/10.1016/j.jacc.2019.01.059.

    Article  PubMed  Google Scholar 

  146. Khan A, Moe GW, Nili N, Rezaei E, Eskandarian M, Butany J, et al. The cardiac atria are chambers of active remodeling and dynamic collagen turnover during evolving heart failure. J Am Coll Cardiol. 2004;43(1):68–76. https://doi.org/10.1016/j.jacc.2003.07.030.

    Article  CAS  PubMed  Google Scholar 

  147. Tsioufis C, Stougiannos P, Taxiarchou E, Skiadas I, Chatzis D, Thomopoulos C, et al. The interplay between haemodynamic load, brain natriuretic peptide and left atrial size in the early stages of essential hypertension. J Hypertens. 2006;24(5):965–72. https://doi.org/10.1097/01.hjh.0000222768.15100.00.

    Article  CAS  PubMed  Google Scholar 

  148. Harvey W. Exercitatio anatomica de motu cordis et sanguinis in animalibus. Florence: R. Lier & co.; 1928.

    Google Scholar 

  149. Katz AM. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc Drugs Ther. 2002;16(3):245–9.

    Article  CAS  PubMed  Google Scholar 

  150. Samuel JL, Swynghedauw B. Is cardiac hypertrophy a required compensatory mechanism in pressure-overloaded heart? J Hypertens. 2008;26(5):857–8. https://doi.org/10.1097/HJH.0b013e3282fbf619.

    Article  CAS  PubMed  Google Scholar 

  151. Fraccarollo D, Galuppo P, Bauersachs J. Novel therapeutic approaches to post-infarction remodelling. Cardiovasc Res. 2012;94(2):293–303. https://doi.org/10.1093/cvr/cvs109.

    Article  CAS  PubMed  Google Scholar 

  152. Yoneyama K, Donekal S, Venkatesh BA, Wu CO, Liu CY, Souto Nacif M, et al. Natural history of myocardial function in an adult human population: serial longitudinal observations from MESA. JACC Cardiovasc Imaging. 2016;9(10):1164–73. https://doi.org/10.1016/j.jcmg.2016.01.038.

    Article  PubMed  Google Scholar 

  153. Kishi S, Teixido-Tura G, Ning H, Venkatesh BA, Wu C, Almeida A, et al. Cumulative blood pressure in early adulthood and cardiac dysfunction in middle age: the CARDIA Study. J Am Coll Cardiol. 2015;65(25):2679–87. https://doi.org/10.1016/j.jacc.2015.04.042.

    Article  PubMed  Google Scholar 

  154. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388–400. https://doi.org/10.1161/circulationaha.113.001878.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64. https://doi.org/10.1172/jci108079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bell V, McCabe EL, Larson MG, Rong J, Merz AA, Osypiuk E, et al. Relations between aortic stiffness and left ventricular mechanical function in the community. J Am Heart Assoc. 2017;6(1). https://doi.org/10.1161/jaha.116.004903.

  157. Ohyama Y, Ambale-Venkatesh B, Noda C, Chugh AR, Teixido-Tura G, Kim JY, et al. Association of aortic stiffness with left ventricular remodeling and reduced left ventricular function measured by magnetic resonance imaging: the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging. 2016;9(7). https://doi.org/10.1161/circimaging.115.004426.

  158. Ky B, French B, May Khan A, Plappert T, Wang A, Chirinos JA, et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol. 2013;62(13):1165–72. https://doi.org/10.1016/j.jacc.2013.03.085.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Saxena T, Ali AO, Saxena M. Pathophysiology of essential hypertension: an update. Expert Rev Cardiovasc Ther. 2018;16(12):879–87. https://doi.org/10.1080/14779072.2018.1540301.

    Article  CAS  PubMed  Google Scholar 

  160. Samson R, Lee A, Lawless S, Hsu R, Sander G. Novel pathophysiological mechanisms in hypertension. Adv Exp Med Biol. 2017;956:21–35. https://doi.org/10.1007/5584_2016_96.

    Article  PubMed  Google Scholar 

  161. Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Med Cell Longev. 2017;2017:3920195. https://doi.org/10.1155/2017/3920195.

    Article  CAS  Google Scholar 

  162. Moreno MU, Eiros R, Gavira JJ, Gallego C, Gonzalez A, Ravassa S, et al. The hypertensive myocardium: from microscopic lesions to clinical complications and outcomes. Med Clin North Am. 2017;101(1):43–52. https://doi.org/10.1016/j.mcna.2016.08.002.

    Article  PubMed  Google Scholar 

  163. Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol. 2012;52(4):857–64. https://doi.org/10.1016/j.yjmcc.2011.08.028.

    Article  CAS  PubMed  Google Scholar 

  164. Hamasaki S, Al Suwaidi J, Higano ST, Miyauchi K, Holmes DR Jr, Lerman A. Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy. J Am Coll Cardiol. 2000;35(6):1654–60. https://doi.org/10.1016/s0735-1097(00)00594-5.

    Article  CAS  PubMed  Google Scholar 

  165. Olsen MH, Wachtell K, Meyer C, Hove JD, Palmieri V, Dige-Petersen H, et al. Association between vascular dysfunction and reduced myocardial flow reserve in patients with hypertension: a LIFE substudy. J Hum Hypertens. 2004;18(6):445–52. https://doi.org/10.1038/sj.jhh.1001716.

    Article  CAS  PubMed  Google Scholar 

  166. Cheng S, McCabe EL, Larson MG, Chen MH, Osypiuk E, Lehman BT, et al. Left ventricular mechanical function: clinical correlates, heritability, and association with parental heart failure. Eur J Heart Fail. 2015;17(1):44–50. https://doi.org/10.1002/ejhf.202.

    Article  PubMed  Google Scholar 

  167. •• Yoneyama K, Gjesdal O, Choi EY, Wu CO, Hundley WG, Gomes AS, et al. Age, sex, and hypertension-related remodeling influences left ventricular torsion assessed by tagged cardiac magnetic resonance in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. Circulation. 2012;126(21):2481–90. https://doi.org/10.1161/circulationaha.112.093146This important CMR study demonstrated the impact of hypertension on left ventricular torsion and concentric remodeling.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Vasan RS, Xanthakis V, Lyass A, Andersson C, Tsao C, Cheng S, et al. Epidemiology of left ventricular systolic dysfunction and heart failure in the framingham study: an echocardiographic study over 3 decades. JACC Cardiovasc Imaging. 2018;11(1):1–11. https://doi.org/10.1016/j.jcmg.2017.08.007.

    Article  PubMed  Google Scholar 

  169. Velagaleti RS, Gona P, Pencina MJ, Aragam J, Wang TJ, Levy D, et al. Left ventricular hypertrophy patterns and incidence of heart failure with preserved versus reduced ejection fraction. Am J Cardiol. 2014;113(1):117–22. https://doi.org/10.1016/j.amjcard.2013.09.028.

    Article  PubMed  Google Scholar 

  170. Lieb W, Gona P, Larson MG, Aragam J, Zile MR, Cheng S, et al. The natural history of left ventricular geometry in the community: clinical correlates and prognostic significance of change in LV geometric pattern. JACC Cardiovasc Imaging. 2014;7(9):870–8. https://doi.org/10.1016/j.jcmg.2014.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 2012;5(8):837–48. https://doi.org/10.1016/j.jcmg.2012.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  172. •• Yeboah J, Rodriguez CJ, Stacey B, Lima JA, Liu S, Carr JJ, et al. Prognosis of individuals with asymptomatic left ventricular systolic dysfunction in the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2012;126(23):2713–9. https://doi.org/10.1161/circulationaha.112.112201This CMR study showed that LV systolic dysfunction was a strong predictor of heart failure in the community.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sharma RK, Volpe G, Rosen BD, Ambale-Venkatesh B, Donekal S, Fernandes V, et al. Prognostic implications of left ventricular dyssynchrony for major adverse cardiovascular events in asymptomatic women and men: the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2014;3(4). https://doi.org/10.1161/jaha.114.000975.

  174. Ambale-Venkatesh B, Yoneyama K, Sharma RK, Ohyama Y, Wu CO, Burke GL, et al. Left ventricular shape predicts different types of cardiovascular events in the general population. Heart. 2017;103(7):499–507. https://doi.org/10.1136/heartjnl-2016-310052.

    Article  CAS  PubMed  Google Scholar 

  175. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6. https://doi.org/10.1056/nejm199005313222203.

    Article  CAS  PubMed  Google Scholar 

  176. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, et al. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 2011;124(23):2491–501. https://doi.org/10.1161/circulationaha.110.011031.

    Article  PubMed  Google Scholar 

  177. Nwabuo CC, Armstrong AAC, Ambale-Venkatesh B, Vasconcellos HD, Mewton N, Lima JAC, et al. Left ventricular global function index predicts incident heart failure and cardiovascular disease in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Eur Heart J Cardiovasc Imaging. 2018;20(5):533–40. https://doi.org/10.1093/ehjci/jey123.

    Article  PubMed Central  Google Scholar 

  178. Mewton N, Opdahl A, Choi EY, Almeida AL, Kawel N, Wu CO, et al. Left ventricular global function index by magnetic resonance imaging--a novel marker for assessment of cardiac performance for the prediction of cardiovascular events: the Multi-Ethnic Study of Atherosclerosis. Hypertension. 2013;61(4):770–8. https://doi.org/10.1161/hypertensionaha.111.198028.

    Article  CAS  PubMed  Google Scholar 

  179. Arenja N, Riffel JH, Fritz T, Andre F, Ausdem Siepen F, Mueller-Hennessen M, et al. Diagnostic and prognostic value of long-axis strain and myocardial contraction fraction using standard cardiovascular MR imaging in patients with nonischemic dilated cardiomyopathies. Radiology. 2017;283(3):681–91. https://doi.org/10.1148/radiol.2016161184.

    Article  PubMed  Google Scholar 

  180. Wachtell K, Dahlof B, Rokkedal J, Papademetriou V, Nieminen MS, Smith G, et al. Change of left ventricular geometric pattern after 1 year of antihypertensive treatment: the Losartan Intervention For Endpoint reduction in hypertension (LIFE) study. Am Heart J. 2002;144(6):1057–64. https://doi.org/10.1067/mhj.2002.126113.

    Article  CAS  PubMed  Google Scholar 

  181. •• Niiranen TJ, Lin H, Larson MG, Vasan RS. Familial clustering of hypertensive target organ damage in the community. J Hypertens. 2018;36(5):1086–93. https://doi.org/10.1097/hjh.0000000000001679This study showed familial concordance of abnormal LV geometry.

    Article  CAS  PubMed  Google Scholar 

  182. Lam CS, Liu X, Yang Q, Larson MG, Pencina MJ, Aragam J, et al. Familial aggregation of left ventricular geometry and association with parental heart failure: the Framingham Heart Study. Circ Cardiovasc Genet. 2010;3(6):492–8. https://doi.org/10.1161/circgenetics.110.941088.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Okin PM, Gerdts E, Kjeldsen SE, Julius S, Edelman JM, Dahlof B, et al. Gender differences in regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy. Hypertension. 2008;52(1):100–6. https://doi.org/10.1161/hypertensionaha.108.110064.

    Article  CAS  PubMed  Google Scholar 

  184. Arnett DK, Rautaharju P, Crow R, Folsom AR, Ekelund LG, Hutchinson R, et al. Black-white differences in electrocardiographic left ventricular mass and its association with blood pressure (the ARIC study). Atherosclerosis Risk in Communities. Am J Cardiol. 1994;74(3):247–52. https://doi.org/10.1016/0002-9149(94)90365-4.

    Article  CAS  PubMed  Google Scholar 

  185. Hinojar R, Fernandez-Golfin C, Gonzalez-Gomez A, Rincon LM, Plaza-Martin M, Casas E, et al. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis. Int J Cardiol. 2017;249:467–72. https://doi.org/10.1016/j.ijcard.2017.07.087.

    Article  PubMed  Google Scholar 

  186. Choi EY, Rosen BD, Fernandes VR, Yan RT, Yoneyama K, Donekal S, et al. Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J. 2013;34(30):2354–61. https://doi.org/10.1093/eurheartj/eht133.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Moreira HT, Nwabuo CC, Armstrong AC, Kishi S, Gjesdal O, Reis JP, et al. Reference ranges and regional patterns of left ventricular strain and strain rate using two-dimensional speckle-tracking echocardiography in a healthy middle-aged Black and White population: the CARDIA Study. J Am Soc Echocardiogr. 2017;30(7):647–58.e2. https://doi.org/10.1016/j.echo.2017.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  188. •• Rosen BD, Saad MF, Shea S, Nasir K, Edvardsen T, Burke G, et al. Hypertension and smoking are associated with reduced regional left ventricular function in asymptomatic: individuals the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol. 2006;47(6):1150–8. https://doi.org/10.1016/j.jacc.2005.08.078This study showed the association between hypertension and regional cardiac function.

    Article  PubMed  Google Scholar 

  189. Nayor M, Enserro DM, Xanthakis V, Larson MG, Benjamin EJ, Aragam J, et al. Comorbidities and cardiometabolic disease: relationship with longitudinal changes in diastolic function. JACC Heart Fail. 2018;6(4):317–25. https://doi.org/10.1016/j.jchf.2017.12.018.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ashikaga H, Criscione JC, Omens JH, Covell JW, Ingels NB Jr. Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am J Physiol Heart Circ Physiol. 2004;286(2):H640–7. https://doi.org/10.1152/ajpheart.00575.2003.

    Article  CAS  PubMed  Google Scholar 

  191. Beyar R, Sideman S. Left ventricular mechanics related to the local distribution of oxygen demand throughout the wall. Circ Res. 1986;58(5):664–77. https://doi.org/10.1161/01.res.58.5.664.

    Article  CAS  PubMed  Google Scholar 

  192. Kennedy A, Finlay DD, Guldenring D, Bond R, Moran K, McLaughlin J. The cardiac conduction system: generation and conduction of the cardiac impulse. Crit Care Nurs Clin North Am. 2016;28(3):269–79. https://doi.org/10.1016/j.cnc.2016.04.001.

    Article  PubMed  Google Scholar 

  193. Kokubo Y, Matsumoto C. Hypertension is a risk factor for several types of heart disease: review of prospective studies. Adv Exp Med Biol. 2017;956:419–26. https://doi.org/10.1007/5584_2016_99.

    Article  PubMed  Google Scholar 

  194. Lip GYH, Coca A, Kahan T, Boriani G, Manolis AS, Olsen MH, et al. Hypertension and cardiac arrhythmias: a consensus document from the European Heart Rhythm Association (EHRA) and ESC Council on Hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia (SOLEACE). Europace. 2017;19(6):891–911. https://doi.org/10.1093/europace/eux091.

    Article  PubMed  Google Scholar 

  195. Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386(9989):154–62. https://doi.org/10.1016/s0140-6736(14)61774-8.

    Article  PubMed  PubMed Central  Google Scholar 

  196. •• Chang SA, Kim HK, Kim DH, Kim YJ, Sohn DW, Oh BH, et al. Left ventricular systolic and diastolic dyssynchrony in asymptomatic hypertensive patients. J Am Soc Echocardiogr, 2009. 22(4):337–42. https://doi.org/10.1016/j.echo.2009.01.024This report highlights that left ventricular systolic and diastolic dyssynchrony may be present in asymptomatic hypertensive patients.

  197. Yang B, Chettiveettil D, Jones F, Aguero M, Lewis JF. Left ventricular dyssynchrony in hypertensive patients without congestive heart failure. Clin Cardiol. 2008;31(12):597–601. https://doi.org/10.1002/clc.20350.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kahan T, Bergfeldt L. Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart. 2005;91(2):250–6. https://doi.org/10.1136/hrt.2004.042473.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Lerman BB, Burkhoff D, Yue DT, Franz MR, Sagawa K. Mechanoelectrical feedback: independent role of preload and contractility in modulation of canine ventricular excitability. J Clin Invest. 1985;76(5):1843–50. https://doi.org/10.1172/jci112177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Emiroglu MY, Bulut M, Sahin M, Acar G, Akcakoyun M, Kargin R, et al. Assessment of atrial conduction time in patients with essential hypertension. J Electrocardiol. 2011;44(2):251–6. https://doi.org/10.1016/j.jelectrocard.2010.09.012.

    Article  PubMed  Google Scholar 

  201. Tribulova N, Okruhlicova L, Novakova S, Pancza D, Bernatova I, Pechanova O, et al. Hypertension-related intermyocyte junction remodelling is associated with a higher incidence of low-K(+)-induced lethal arrhythmias in isolated rat heart. Exp Physiol. 2002;87(2):195–205.

    Article  CAS  PubMed  Google Scholar 

  202. Fialova M, Dlugosova K, Okruhlicova L, Kristek F, Manoach M, Tribulova N. Adaptation of the heart to hypertension is associated with maladaptive gap junction connexin-43 remodeling. Physiol Res. 2008;57(1):7–11.

    CAS  PubMed  Google Scholar 

  203. •• Mauger C, Gilbert K, Lee AM, Sanghvi MM, Aung N, Fung K, et al. Right ventricular shape and function: cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank. J Cardiovasc Magn Reson. 2019;21(1):41. https://doi.org/10.1186/s12968-019-0551-6This study reports correlates of RV remodeling.

    Article  PubMed  PubMed Central  Google Scholar 

  204. •• Chahal H, Johnson C, Tandri H, Jain A, Hundley WG, Barr RG, et al. Relation of cardiovascular risk factors to right ventricular structure and function as determined by magnetic resonance imaging (results from the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol. 2010;106(1):110–6. https://doi.org/10.1016/j.amjcard.2010.02.022This study reported that blood pressure is related to RV remodeling.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kawut SM, Barr RG, Lima JA, Praestgaard A, Johnson WC, Chahal H, et al. Right ventricular structure is associated with the risk of heart failure and cardiovascular death: the Multi-Ethnic Study of Atherosclerosis (MESA)--right ventricle study. Circulation. 2012;126(14):1681–8. https://doi.org/10.1161/circulationaha.112.095216.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Chatterjee NA, Shah RV, Murthy VL, Praestgaard A, Shah SJ, Ventetuolo CE, et al. Right ventricular structure and function are associated with incident atrial fibrillation: MESA-RV Study (Multi-Ethnic Study of Atherosclerosis-Right Ventricle). Circ Arrhythm Electrophysiol. 2017;10(1). https://doi.org/10.1161/circep.116.004738.

  207. Dell’Italia LJ. The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol. 1991;16(10):653–720.

    PubMed  Google Scholar 

  208. Bystrom B, Lindqvist P, Henein M. The right ventricle: knowing what is right. Int J Card Imaging. 2008;24(7):701–2. https://doi.org/10.1007/s10554-008-9336-y.

    Article  Google Scholar 

  209. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1(1):7–21. https://doi.org/10.3109/10976649909080829.

    Article  CAS  PubMed  Google Scholar 

  210. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48. https://doi.org/10.1161/circulationaha.107.653576.

    Article  PubMed  Google Scholar 

  211. Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.

    Article  CAS  PubMed  Google Scholar 

  212. Todiere G, Neglia D, Ghione S, Fommei E, Capozza P, Guarini G, et al. Right ventricular remodelling in systemic hypertension: a cardiac MRI study. Heart. 2011;97(15):1257. https://doi.org/10.1136/hrt.2010.221259.

    Article  PubMed  Google Scholar 

  213. •• Tadic M, Cuspidi C, Celic V, Pencic-Popovic B, Mancia G. Nocturnal hypertension and right heart remodeling. J Hypertens. 2018;36(1):136–42. https://doi.org/10.1097/hjh.0000000000001506This echocardiography study showed that right atrial conduit function is significantly reduced in the patients with nocturnal and day-night-time hypertension.

    Article  CAS  PubMed  Google Scholar 

  214. Rommel KP, von Roeder M, Oberueck C, Latuscynski K, Besler C, Blazek S, et al. Load-independent systolic and diastolic right ventricular function in heart failure with preserved ejection fraction as assessed by resting and handgrip exercise pressure-volume loops. Circ Heart Fail. 2018;11(2):e004121. https://doi.org/10.1161/circheartfailure.117.004121.

    Article  PubMed  Google Scholar 

  215. Pedrinelli R, Canale ML, Giannini C, Talini E, Penno G, Dell'Omo G, et al. Right ventricular dysfunction in early systemic hypertension: a tissue Doppler imaging study in patients with high-normal and mildly increased arterial blood pressure. J Hypertens. 2010;28(3):615–21. https://doi.org/10.1097/hjh.0b013e328334f181.

    Article  CAS  PubMed  Google Scholar 

  216. Tadic M, Cuspidi C, Pencic B, Jozika L, Celic V. Relationship between right ventricular remodeling and heart rate variability in arterial hypertension. J Hypertens. 2015;33(5):1090–7. https://doi.org/10.1097/hjh.0000000000000511.

    Article  CAS  PubMed  Google Scholar 

  217. Hanboly N. Right ventricle morphology and function in systemic hypertension. Niger J Cardiol. 2016;13(1):11–7. https://doi.org/10.4103/0189-7969.173854.

    Article  Google Scholar 

  218. Morris DA, Gailani M, Vaz Perez A, Blaschke F, Dietz R, Haverkamp W, et al. Right ventricular myocardial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr. 2011;24(8):886–97. https://doi.org/10.1016/j.echo.2011.04.005.

    Article  PubMed  Google Scholar 

  219. Bruns DR, Tatman PD, Kalkur RS, Brown RD, Stenmark KR, Buttrick PM, et al. The right ventricular fibroblast secretome drives cardiomyocyte dedifferentiation. PLoS One. 2019;14(8):e0220573. https://doi.org/10.1371/journal.pone.0220573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31. https://doi.org/10.1161/circulationaha.107.653584.

    Article  PubMed  Google Scholar 

  221. Dibble CT, Shimbo D, Barr RG, Bagiella E, Chahal H, Ventetuolo CE, et al. Brachial artery diameter and the right ventricle: the Multi-Ethnic Study of Atherosclerosis-right ventricle study. Chest. 2012;142(6):1399–405. https://doi.org/10.1378/chest.12-0028.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Al-Naamani N, Chirinos JA, Zamani P, Ruthazer R, Paulus JK, Roberts KE, et al. Association of systemic arterial properties with right ventricular morphology: the Multi-Ethnic Study of Atherosclerosis (MESA)-Right Ventricle Study. J Am Heart Assoc. 2016;5(12). https://doi.org/10.1161/jaha.116.004162.

  223. Tadic M, Cuspidi C, Vukomanovic V, Kocijancic V, Celic V. Right ventricular remodeling and updated left ventricular geometry classification: is there any relationship? Blood Press. 2016;25(5):292–7. https://doi.org/10.3109/08037051.2016.1172868.

    Article  PubMed  Google Scholar 

  224. Tumuklu MM, Erkorkmaz U, Ocal A. The impact of hypertension and hypertension-related left ventricle hypertrophy on right ventricle function. Echocardiography. 2007;24(4):374–84. https://doi.org/10.1111/j.1540-8175.2007.00419.x.

    Article  PubMed  Google Scholar 

  225. Tadic M, Cuspidi C, Vukomanovic V, Kocijancic V, Celic V. The impact of different left ventricular geometric patterns on right ventricular deformation and function in hypertensive patients. Arch Cardiovasc Dis. 2016;109(5):311–20. https://doi.org/10.1016/j.acvd.2015.12.006.

    Article  PubMed  Google Scholar 

  226. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713; quiz 86-8. https://doi.org/10.1016/j.echo.2010.05.010.

    Article  PubMed  Google Scholar 

  227. Proplesch M, Merz AA, Claggett BL, Lewis EF, Dwyer KH, Crousillat DR, et al. Right atrial structure and function in patients with hypertension and with chronic heart failure. Echocardiography. 2018;35(7):905–14. https://doi.org/10.1111/echo.13876.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Sallach JA, Tang WH, Borowski AG, Tong W, Porter T, Martin MG, et al. Right atrial volume index in chronic systolic heart failure and prognosis. JACC Cardiovasc Imaging. 2009;2(5):527–34. https://doi.org/10.1016/j.jcmg.2009.01.012.

    Article  PubMed  Google Scholar 

  229. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32(4):948–54. https://doi.org/10.1016/s0735-1097(98)00337-4.

    Article  PubMed  Google Scholar 

  230. Tadic M, Cuspidi C, Suzic-Lazic J, Andric A, Stojcevski B, Ivanovic B, et al. Is there a relationship between right-ventricular and right atrial mechanics and functional capacity in hypertensive patients? J Hypertens. 2014;32(4):929–37. https://doi.org/10.1097/hjh.0000000000000102.

    Article  CAS  PubMed  Google Scholar 

  231. Tadic M, Cuspidi C, Pencic B, Sljivic A, Ivanovic B, Neskovic A, et al. High-normal blood pressure impacts the right heart mechanics: a three-dimensional echocardiography and two-dimensional speckle tracking imaging study. Blood Press Monit. 2014;19(3):145–52. https://doi.org/10.1097/mbp.0000000000000043.

    Article  PubMed  Google Scholar 

  232. Tadic M, Cuspidi C, Pencic B, Ivanovic B, Scepanovic R, Marjanovic T, et al. Circadian blood pressure pattern and right ventricular and right atrial mechanics: a two- and three-dimensional echocardiographic study. J Am Soc Hypertens. 2014;8(1):45–53. https://doi.org/10.1016/j.jash.2013.07.008.

    Article  PubMed  Google Scholar 

  233. Tadic M, Cuspidi C, Kocijancic V, Celic V, Vukomanovic V. Does left ventricular geometric patterns impact right atrial phasic function? Findings from the Hypertensive Population. Echocardiography. 2016;33(8):1186–94. https://doi.org/10.1111/echo.13220.

    Article  PubMed  Google Scholar 

Download references

Funding

This work is supported by contracts N01-HL25195 and HHSN268201500001I from the National Heart, Lung, and Blood Institute (NHLBI) and NIH grants HL080124, HL071039, HL077447, HL107385, 1R01HL126136, 5R01HL107385, 1R01HL60040, 1RO1HL70100, R01HL131532, and R01HL134168 (Ramachandran Vasan). Ramachandran S. Vasan is also supported in part by the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran S. Vasan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwabuo, C.C., Vasan, R.S. Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Curr Hypertens Rep 22, 11 (2020). https://doi.org/10.1007/s11906-020-1017-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-1017-9

Keywords

Navigation