Skip to main content

Advertisement

Log in

A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography

  • Cardiovascular Disease and Stroke (S. Prabhakaran, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular disease (CVD) and stroke risk assessment have been largely based on the success of traditional statistically derived risk calculators such as Pooled Cohort Risk Score or Framingham Risk Score. However, over the last decade, automated computational paradigms such as machine learning (ML) and deep learning (DL) techniques have penetrated into a variety of medical domains including CVD/stroke risk assessment. This review is mainly focused on the changing trends in CVD/stroke risk assessment and its stratification from statistical-based models to ML-based paradigms using non-invasive carotid ultrasonography.

Recent Findings

In this review, ML-based strategies are categorized into two types: non-image (or conventional ML-based) and image-based (or integrated ML-based). The success of conventional (non-image-based) ML-based algorithms lies in the different data-driven patterns or features which are used to train the ML systems. Typically these features are the patients’ demographics, serum biomarkers, and multiple clinical parameters. The integrated (image-based) ML-based algorithms integrate the features derived from the ultrasound scans of the arterial walls (such as morphological measurements) with conventional risk factors in ML frameworks.

Summary

Even though the review covers ML-based system designs for carotid and coronary ultrasonography, the main focus of the review is on CVD/stroke risk scores based on carotid ultrasound. There are two key conclusions from this review: (i) fusion of image-based features with conventional cardiovascular risk factors can lead to more accurate CVD/stroke risk stratification; (ii) the ability to handle multiple sources of information in big data framework using artificial intelligence-based paradigms (such as ML and DL) is likely to be the future in preventive CVD/stroke risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cardiovascular diseases (CVDs): key facts by WHO 2016 [http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)]. Accessed 1 Oct 2018.

  2. Rosengren A, Hawken S, Ôunpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):953–62.

    PubMed  Google Scholar 

  3. • O’Donnell MJ, Chin SL, Rangarajan S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–75 An important logitudinal study that associated the convetional risk factors with risk of stroke events.

    PubMed  Google Scholar 

  4. O’Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.

    PubMed  Google Scholar 

  5. Stevens RJ, Coleman RL, Adler AI, Stratton IM, Matthews DR, Holman RR. Risk factors for myocardial infarction case fatality and stroke case fatality in type 2 diabetes: UKPDS 66. Diabetes Care. 2004;27(1):201–7.

    PubMed  Google Scholar 

  6. Saba L, Molinari F, Meiburger K, et al. What is the correct distance measurement metric when measuring carotid ultrasound intima-media thickness automatically? Int Angiol. 2012;31(5):483–9.

    CAS  PubMed  Google Scholar 

  7. Conroy R, Pyörälä K, Fitzgerald A, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.

    CAS  PubMed  Google Scholar 

  8. D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53.

    PubMed  Google Scholar 

  9. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–9.

    CAS  PubMed  Google Scholar 

  10. Stevens RJ, Kothari V, Adler AI, Stratton IM, Holman RR. The UKPDS risk engine: a model for the risk of coronary heart disease in type II diabetes (UKPDS 56). Clin Sci. 2001;101(6):671–9.

    CAS  PubMed  Google Scholar 

  11. Kothari V, Stevens RJ, Adler AI, et al. UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke. 2002;33(7):1776–81.

    PubMed  Google Scholar 

  12. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099.

    PubMed  PubMed Central  Google Scholar 

  13. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Part B):2935–59.

    PubMed  Google Scholar 

  14. Group NDR. Risk assessment chart for death from cardiovascular disease based on a 19-year follow-up study of a Japanese representative population. Circ J. 2006;70(10):1249–55.

    Google Scholar 

  15. Nobel L, Mayo NE, Hanley J, Nadeau L, Daskalopoulou SS. MyRisk_Stroke Calculator: a personalized stroke risk assessment tool for the general population. J Clin Neurol. 2014;10(1):1–9.

    PubMed  PubMed Central  Google Scholar 

  16. Bonek K, Głuszko P. Cardiovascular risk assessment in rheumatoid arthritis–controversies and the new approach. Reumatologia. 2016;54(3):128–35.

    PubMed  PubMed Central  Google Scholar 

  17. Arts E, Popa C, Den Broeder A, et al. Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis. Ann Rheum Dis. 2014;74(4):668–74 annrheumdis-2013-204024.

    PubMed  Google Scholar 

  18. Garg N, Muduli SK, Kapoor A, et al. Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart J. 2017;69(4):458–63.

    PubMed  PubMed Central  Google Scholar 

  19. Mathiesen Ellisiv B, Johnsen Stein H, Wilsgaard T, Bønaa Kaare H, Løchen M-L, Njølstad I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke. Stroke. 2011;42(4):972–8.

    CAS  PubMed  Google Scholar 

  20. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33(12):2916–22.

    PubMed  Google Scholar 

  21. Belcaro G, Nicolaides AN, Ramaswami G, et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1)). Atherosclerosis. 2001;156(2):379–87.

    CAS  PubMed  Google Scholar 

  22. Garcia-Garcia HM, Costa MA, Serruys PW. Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J. 2010;31(20):2456–69.

    PubMed  Google Scholar 

  23. Banchhor SK, Araki T, Londhe ND, et al. Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: a comparative approach. Comput Methods Prog Biomed. 2016;134:237–58.

    Google Scholar 

  24. Van Soest G, Regar E, KoljenoviÄ S, et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt. 2010;15(1):011105–9.

    PubMed  Google Scholar 

  25. Boi A, Jamthikar AD, Saba L, et al. A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography. Curr Atheroscler Rep. 2018;20(7):33.

    PubMed  Google Scholar 

  26. Blaha MJ, Mortensen MB, Kianoush S, Tota-Maharaj R, Cainzos-Achirica M. Coronary artery calcium scoring: is it time for a change in methodology? JACC Cardiovasc Imaging. 2017;10(8):923–37.

    PubMed  Google Scholar 

  27. Eckert J, Schmidt M, Magedanz A, Voigtländer T, Schmermund A. Coronary CT angiography in managing atherosclerosis. Int J Mol Sci. 2015;16(2):3740–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nambi V, Chambless L, Folsom AR, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol. 2010;55(15):1600–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Naqvi TZ, Lee M-S. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging. 2014;7(10):1025–38.

    PubMed  Google Scholar 

  30. Saba L, Mallarini G, Sanfilippo R, Zeng G, Montisci R, Suri J. Intima media thickness variability (IMTV) and its association with cerebrovascular events: a novel marker of carotid therosclerosis? Cardiovasc Diagn Ther. 2012;2(1):10–8.

    PubMed  PubMed Central  Google Scholar 

  31. Cuadrado-Godia E, Maniruzzaman M, Araki T, et al. Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Comput Biol Med. 2018;101:128–45.

    CAS  PubMed  Google Scholar 

  32. Laine A, Sanches JM, Suri JS: Ultrasound imaging: advances and applications. Springer; 2012.

  33. Chambless LE, Heiss G, Folsom AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol. 1997;146(6):483–94.

    CAS  PubMed  Google Scholar 

  34. O’leary DH, Polak JF, Kronmal RA, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke. 1992;23(12):1752–60.

    PubMed  Google Scholar 

  35. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation. 1997;96(5):1432–7.

    CAS  PubMed  Google Scholar 

  36. Rosvall M, Janzon L, Berglund G, Engström G, Hedblad B. Incident coronary events and case fatality in relation to common carotid intima-media thickness. J Intern Med. 2005;257(5):430–7.

    CAS  PubMed  Google Scholar 

  37. Lorenz MW, Schaefer C, Steinmetz H, Sitzer M. Is carotid intima media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the Carotid Atherosclerosis Progression Study (CAPS). Eur Heart J. 2010;31(16):2041–8.

    PubMed  Google Scholar 

  38. Khanna NN, Jamthikar AD, Gupta D, et al. Rheumatoid arthritis: atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning-based tissue characterization. Curr Atheroscler Rep. 2019;21(2):7.

    PubMed  Google Scholar 

  39. Salonen JT, Salonen R. Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler Thromb Vasc Biol. 1991;11(5):1245–9.

    CAS  Google Scholar 

  40. Hirata T, Arai Y, Takayama M, Abe Y, Ohkuma K, Takebayashi T. Carotid plaque score and risk of cardiovascular mortality in the oldest old: results from the TOOTH study. J Atheroscler Thromb. 2018;25(1):55–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Park HW, Kim WH, Kim KH, et al. Carotid plaque is associated with increased cardiac mortality in patients with coronary artery disease. Int J Cardiol. 2013;166(3):658–63.

    PubMed  Google Scholar 

  42. Stein JH, Korcarz CE, Hurst RT, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 2008;21(2):93–111.

    PubMed  Google Scholar 

  43. Stein JH, Johnson HM. Carotid intima-media thickness, plaques, and cardiovascular disease risk: implications for preventive cardiology guidelines. In. J Am Coll Cardiol. 2010;55:1608–10.

    PubMed  Google Scholar 

  44. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365(3):213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Allan GM, Garrison S, McCormack J. Comparison of cardiovascular disease risk calculators. Curr Opin Lipidol. 2014;25(4):254–65.

    CAS  PubMed  Google Scholar 

  46. Conroy RM, on behalf of the Spg, Pyörälä K, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.

    CAS  PubMed  Google Scholar 

  47. Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J. 2016;38(23):1805–14.

    PubMed Central  Google Scholar 

  48. Biswas M, Kuppili V, Araki T, et al. Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on Japanese diabetic cohort. Comput Biol Med. 2018;98:100–17.

    PubMed  Google Scholar 

  49. Biswas M, Kuppili V, Edla DR, et al. Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput Methods Prog Biomed. 2017;155:165–77.

    Google Scholar 

  50. Lam C, Yi D, Guo M, Lindsey T. Automated detection of diabetic retinopathy using deep learning. AMIA Jt Summits Transl Sci Proc. 2017;2018:147–55.

    Google Scholar 

  51. Heo J, Yoon J, Park HJ, Kim YD, Nam HS, Heo JH: Machine learning-based model can predict stroke outcome. In: Am Heart Assoc 2018.

  52. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.

    PubMed  PubMed Central  Google Scholar 

  53. Ambale-Venkatesh B, Wu CO, Liu K, et al. Cardiovascular event prediction by machine learning: the Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017;121(9):1092–101 CIRCRESAHA. 117.311312.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. •• Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944 This study compared the ML-based risk startification with convetional risk calculators.

    PubMed  PubMed Central  Google Scholar 

  55. Acharya RU, Faust O, Alvin APC, et al. Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. J Med Syst. 2012;36(3):1861–71.

    PubMed  Google Scholar 

  56. Acharya UR, Faust O, Alvin A, et al. Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization. Comput Methods Prog Biomed. 2013;110(1):66–75.

    Google Scholar 

  57. • Acharya UR, Faust O, Sree SV, et al. An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans. IEEE Trans Instrum Meas. 2012;61(4):1045–53 This was an important study that perfromed the carotid atherosclerotic plaque characterization using ML approach.

    Google Scholar 

  58. Acharya UR, Krishnan MMR, Sree SV, et al. Plaque tissue characterization and classification in ultrasound carotid scans: a paradigm for vascular feature amalgamation. IEEE Trans Instrum Meas. 2013;62(2):392–400.

    Google Scholar 

  59. Acharya UR, Mookiah MRK, Sree SV, et al. Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment. Med Biol Eng Comput. 2013;51(5):513–23.

    PubMed  Google Scholar 

  60. Acharya UR, Sree SV, Krishnan MMR, et al. Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. Ultrasound Med Biol. 2012;38(6):899–915.

    PubMed  Google Scholar 

  61. •• Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine learning outperforms ACC/AHA CVD risk calculator in MESA. J Am Heart Assoc. 2018;7(22):e009476 This is the first of its kind study which have compared the machine learning-based risk calculator with ACC/AHA risk calculator. This article is very important to usage of ML in CVD risk assessment.

    PubMed  PubMed Central  Google Scholar 

  62. Ramachandran A, Snehalatha C. Current scenario of diabetes in India. J Diab. 2009;1(1):18–28.

    Google Scholar 

  63. Gupta R, Rao RS, Misra A, Sharma SK. Recent trends in epidemiology of dyslipidemias in India. Indian Heart J. 2017;69(3):382–92.

    PubMed  PubMed Central  Google Scholar 

  64. Anchala R, Kannuri NK, Pant H, et al. Hypertension in India: a systematic review and meta-analysis of prevalence, awareness, and control of hypertension. J Hypertens. 2014;32(6):1170–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Meer IM, Iglesias del Sol A, Hak AE, Bots ML, Hofman A, Witteman JC. Risk factors for progression of atherosclerosis measured at multiple sites in the arterial tree: the Rotterdam Study. Stroke. 2003;34(10):2374–9.

    PubMed  Google Scholar 

  66. Øygarden H. Carotid intima-media thickness and prediction of cardiovascular disease. J Am Heart Assoc. 2017;6(1):e005313.

    PubMed  PubMed Central  Google Scholar 

  67. Khanna NN, Jamthikar AD, Gupta D, et al. Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: a diabetic study. Comput Biol Med. 2019;105:125–43.

    PubMed  Google Scholar 

  68. Araki T, Jain PK, Suri HS, et al. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm. Comput Biol Med. 2017;80:77–96.

    PubMed  Google Scholar 

  69. Bishop CM: Pattern recognition and machine learning. Springer 2006.

  70. Sutton RS, Barto AG: Reinforcement learning: an introduction: MIT press; 2018.

  71. Acharya UR, Sree SV, Krishnan MMR, et al. Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput Methods Prog Biomed. 2013;112(3):624–32.

    Google Scholar 

  72. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification. Comput Methods Prog Biomed. 2017;150:9–22.

    Google Scholar 

  73. Banchhor SK, Londhe ND, Araki T, et al. Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm. Comput Biol Med. 2017;91:198–212.

    PubMed  Google Scholar 

  74. Acharya U, Sree SV, Mookiah M, et al. Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: a pilot study. Proc Inst Mech Eng H J Eng Med. 2013;227(6):643–54.

    CAS  Google Scholar 

  75. Than JCM, Saba L, Noor NM, et al. Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework. Comput Biol Med. 2017;89:197–211.

    PubMed  Google Scholar 

  76. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind. Comput Methods Prog Biomed. 2016;126:98–109.

    Google Scholar 

  77. Pareek G, Acharya UR, Sree SV, et al. Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images. Technol Cancer Res Treat. 2013;12(6):545–57.

    PubMed  Google Scholar 

  78. Acharya UR, Vinitha Sree S, Krishnan MM, Molinari F, Garberoglio R, Suri JS. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan systems. Ultrasonics. 2012;52(4):508–20.

    PubMed  Google Scholar 

  79. Molinari F, Meiburger KM, Saba L, et al: Automated carotid IMT measurement and its validation in low contrast ultrasound database of 885 patient Indian population epidemiological study: results of AtheroEdge® software. In: Multi-modality atherosclerosis imaging and diagnosis. Springer; 2014: 209–219.

  80. Molinari F, Zeng G, Suri JS. Intima-media thickness: setting a standard for a completely automated method of ultrasound measurement. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(5):1112–24.

    PubMed  Google Scholar 

  81. Molinari F, Meiburger KM, Suri J: Automated high-performance cIMT measurement techniques using patented AtheroEdge™: a screening and home monitoring system. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE: 2011: IEEE; 2011: 6651–6654.

  82. Saba L, Banchhor SK, Araki T, et al. Intra-and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement. Indian Heart J. 2018;70:649–64.

    PubMed  Google Scholar 

  83. Stein JH, Tattersall MC. Carotid intima-media thickness and cardiovascular disease risk prediction. J Am Coll Cardiol. 2014;63(21):2301–2.

    PubMed  Google Scholar 

  84. Saba L, Banchhor SK, Londhe ND, et al. Web-based accurate measurements of carotid lumen diameter and stenosis severity: an ultrasound-based clinical tool for stroke risk assessment during multicenter clinical trials. Comput Biol Med. 2017;91:306–17.

    PubMed  Google Scholar 

  85. Krishna Kumar P, Araki T, Rajan J, et al. Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach. Med Biol Eng Comput. 2017;55(8):1415–34.

    CAS  PubMed  Google Scholar 

  86. Kumar PK, Araki T, Rajan J, Laird JR, Nicolaides A, Suri JS. State-of-the-art review on automated lumen and adventitial border delineation and its measurements in carotid ultrasound. Comput Methods Prog Biomed. 2018;163:155–68.

    Google Scholar 

  87. Saba L, Araki T, Kumar PK, et al. Carotid inter-adventitial diameter is more strongly related to plaque score than lumen diameter: an automated tool for stroke analysis. J Clin Ultrasound. 2016;44(4):210–20.

    PubMed  Google Scholar 

  88. Muller K-R, Mika S, Ratsch G, Tsuda K, Scholkopf B. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw. 2001;12(2):181–201.

    CAS  PubMed  Google Scholar 

  89. Khanna NN, Jamthikar AD, Araki T, et al. Nonlinear model for the carotid artery disease 10-year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: a Japanese diabetes cohort study. Echocardiography. 2019;36:345–61.

    PubMed  Google Scholar 

  90. Maniruzzaman M, Rahman MJ, Al-MehediHasan M, et al. Accurate diabetes risk stratification using machine learning: role of missing value and outliers. J Med Syst. 2018;42(5):92.

    PubMed  PubMed Central  Google Scholar 

  91. Maniruzzaman M, Kumar N, Menhazul Abedin M, et al. Comparative approaches for classification of diabetes mellitus data: machine learning paradigm. Comput Methods Prog Biomed. 2017;152:23–34.

    Google Scholar 

  92. Araki T, Ikeda N, Shukla D, et al. A new method for IVUS-based coronary artery disease risk stratification: a link between coronary & carotid ultrasound plaque burdens. Comput Methods Prog Biomed. 2016;124:161–79.

    Google Scholar 

  93. Al’Aref SJ, Anchouche K, Singh G, et al: Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J 2018

  94. Chou C-L, Wu Y-J, Hung C-L, et al. Segment-specific prevalence of carotid artery plaque and stenosis in middle-aged adults and elders in Taiwan: a community-based study. J Formos Med Assoc. 2019;118(1):64–71.

    PubMed  Google Scholar 

  95. Farkas S, Molnár S, Nagy K, Hortobágyi T, Csiba L. Comparative in vivo and in vitro postmortem ultrasound assessment of intima-media thickness with additional histological analysis in human carotid arteries. Perspect Med. 2012;1(1):170–6.

    Google Scholar 

  96. Gamble G, Beaumont B, Smith H, et al. B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements. Atherosclerosis. 1993;102(2):163–73.

    CAS  PubMed  Google Scholar 

  97. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    Google Scholar 

  98. Dalbeni A, Giollo A, Tagetti A, et al. Traditional cardiovascular risk factors or inflammation: which factors accelerate atherosclerosis in arthritis patients? Int J Cardiol. 2017;236:488–92.

    CAS  PubMed  Google Scholar 

  99. Acharya UR, Sree SV, Molinari F, Saba L, Nicolaides A, Suri JS. An automated technique for carotid far wall classification using grayscale features and wall thickness variability. J Clin Ultrasound. 2015;43(5):302–11.

    PubMed  Google Scholar 

  100. Kyriacou EC, Petroudi S, Pattichis CS, et al. Prediction of high-risk asymptomatic carotid plaques based on ultrasonic image features. IEEE Trans Inf Technol Biomed. 2012;16(5):966–73.

    PubMed  Google Scholar 

  101. Gastounioti A, Makrodimitris S, Golemati S, Kadoglou NP, Liapis CD, Nikita KS. A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall. IEEE J Biomed Health Inform. 2015;19(3):1137–45.

    PubMed  Google Scholar 

  102. Hu X, Reaven PD, Saremi A, et al. Machine learning to predict rapid progression of carotid atherosclerosis in patients with impaired glucose tolerance. EURASIP J Bioinforma Syst Biol. 2016;2016(1):14.

    Google Scholar 

  103. Narain R, Saxena S, Goyal AK. Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach. Patient Prefer Adherence. 2016;10:1259–70.

    PubMed  PubMed Central  Google Scholar 

  104. Unnikrishnan P, Kumar DK, Poosapadi Arjunan S, Kumar H, Mitchell P, Kawasaki R. Development of health parameter model for risk prediction of CVD using SVM. Comput Math Meth Med. 2016;2016:1–7.

    Google Scholar 

  105. Zarkogianni K, Athanasiou M, Thanopoulou AC, Nikita KS. Comparison of machine learning approaches toward assessing the risk of developing cardiovascular disease as a long-term diabetes complication. IEEE J Biomed Health Inform. 2018;22(5):1637–47.

    PubMed  Google Scholar 

  106. Saba L, Jain PK, Suri HS, et al. Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm. J Med Syst. 2017;41(6):98.

    PubMed  Google Scholar 

  107. Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–7.

    PubMed  Google Scholar 

  108. Korshunov VA, Schwartz SM, Berk BC. Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol. 2007;27(8):1722–8.

    CAS  PubMed  Google Scholar 

  109. Leskinen Y, Lehtimaki T, Loimaala A, et al. Carotid atherosclerosis in chronic renal failure-the central role of increased plaque burden. Atherosclerosis. 2003;171(2):295–302.

    CAS  PubMed  Google Scholar 

  110. Razzouk L, Rockman CB, Patel MR, et al. Co-existence of vascular disease in different arterial beds: peripheral artery disease and carotid artery stenosis—data from Life Line Screening(®). Atherosclerosis. 2015;241(2):687–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Banerjee C, Chimowitz MI. Stroke caused by atherosclerosis of the major intracranial arteries. J Vasc Surg. 2017;65(6):1864–5.

    Google Scholar 

  112. Chen PC, Jeng JS, Hsu HC, Su TC, Chien KL, Lee YT. Carotid atherosclerosis progression and risk of cardiovascular events in a community in Taiwan. Sci Rep. 2016;6:25733.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cuadrado-Godia E, Srivastava SK, Saba L, et al: Geometric total plaque area is an equally powerful phenotype compared with carotid intima-media thickness for stroke risk assessment: a deep learning approach. J Vasc Ultrasound 2018. 1544316718806421.

  114. Beach KW: Principles of ultrasonic imaging and instrumentation. In: Ultrasound and carotid bifurcation atherosclerosis. Edited by Nicolaides A, Beach KW, Kyriacou E, Pattichis CS. London: Springer; 2012: 67–96.

  115. Gupta A, Kesavabhotla K, Baradaran H, et al. Plaque echolucency and stroke risk in asymptomatic carotid stenosis: a systematic review and meta-analysis. Stroke. 2015;46(1):91–7.

    PubMed  Google Scholar 

  116. Huibers A, de Borst GJ, Bulbulia R, Pan H, Halliday A. Plaque echolucency and the risk of ischaemic stroke in patients with asymptomatic carotid stenosis within the first Asymptomatic Carotid Surgery Trial (ACST-1). Eur J Vasc Endovasc Surg. 2016;51(5):616–21.

    CAS  PubMed  Google Scholar 

  117. Kotsis V, Jamthikar AD, Araki T, et al. Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients. Diabetes Res Clin Pract. 2018;143:322–31.

    PubMed  Google Scholar 

  118. Park TH. Evaluation of carotid plaque using ultrasound imaging. J Cardiovasc Ultrasound. 2016;24(2):91–5.

    PubMed  PubMed Central  Google Scholar 

  119. Picano E, Paterni M. Ultrasound tissue characterization of vulnerable atherosclerotic plaque. Int J Mol Sci. 2015;16(5):10121–33.

    PubMed  PubMed Central  Google Scholar 

  120. Nicolaides AN, Kakkos SK, Kyriacou E, et al. Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification. J Vasc Surg. 2010;52(6):1486–1496.e1485.

    PubMed  Google Scholar 

  121. Pedro LM, Sanches JM, Seabra J, Suri JS, Fernandes e Fernandes J. Asymptomatic carotid disease—a new tool for assessing neurological risk. Echocardiography. 2014;31(3):353–61.

    PubMed  Google Scholar 

  122. Pahan K. Lipid-lowering drugs. Cell Mol Life Sci. 2006;63(10):1165–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Abramowicz M, Zuccotti G, Pflomm J-M. Metformin for prediabetes (reprinted from The medical letters on drugs and therapeutics, vol 58, pg 141, 2016). JAMA. 2017;317(11):1171–1.

  124. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    CAS  Google Scholar 

  125. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Google Scholar 

  126. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. • Lekadir K, Galimzianova A, Betriu À, et al. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J Biomed Health Inform. 2017;21(1):48–55 This was an important study that perfromed the carotid atheroscleriotic plaque characterization using DL approach.

    PubMed  Google Scholar 

  128. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Išgum I. A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging. 2018:1.

  129. Can we open the black box of AI? [https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731]. Accessed 1 Oct 2018.

  130. Henglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S. Machine learning approaches in cardiovascular imaging. Circ Cardiovasc Imaging. 2017;10(10):e005614.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors would like thank the editors and reviewers of the Current Reports of Atherosclerosis for giving valuable suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasjit S. Suri.

Ethics declarations

Conflict of Interest

Ankush Jamthikar, Deep Gupta, Narendra N. Khanna, Tadashi Araki, Luca Saba, Andrew Nicolaides, Aditya Sharma, Tomaz Omerzu, Harman S. Suri, Ajay Gupta, Sophie Mavrogeni, Monika Turk, John R. Laird, Athanasios Protogerou, Petros P. Sfikakis, George D. Kitas, Vijay Viswanathan, Gyan Pareek, and Martin Miner declare no conflict of interest. Dr. Jasjit S Suri is affiliated to AtheroPoint, focused in the area of stroke and cardiovascular imaging.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiovascular Disease and Stroke

Appendix: Performance Evaluation Parameters

Appendix: Performance Evaluation Parameters

Sensitivity and specificity are computed using true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP indicates the count for which predicted class labels matches with ground truth label for high-risk threshold point, FN is defined as the number of times the predicted class labels that are incorrectly classified as low-risk, FP is defined as the number of times the predicted class labels that are incorrectly classified as high-risk, and TN is defined as the number of times predicted class labels that are correctly matched with low-risk ground truth label. Sensitivity and specificity are mathematically represented as, \( \mathrm{Sensitivity}=\frac{\mathrm{TP}}{\left(\mathrm{TP}+\mathrm{FN}\right)} \) and \( \mathrm{Specificity}=\frac{\mathrm{TN}}{\left(\mathrm{TN}+\mathrm{FP}\right)} \). Furthermore, the accuracy of risk stratification is mathematically represented as: \( \mathrm{Accuracy}=\frac{\mathrm{TP}+\mathrm{TN}}{\left(\mathrm{TP}+\mathrm{FN}+\mathrm{FP}+\mathrm{FN}\right)} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamthikar, A., Gupta, D., Khanna, N.N. et al. A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography. Curr Atheroscler Rep 21, 25 (2019). https://doi.org/10.1007/s11883-019-0788-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-019-0788-4

Keywords

Navigation