Skip to main content
Log in

Quantification of Aromatic Amino Acids in Cordyceps fungi by Micellar Electrokinetic Capillary Chromatography

  • Biology
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

A facile micellar electrokinetic chromatography (MEKC) method was developed for quantification of aromatic amino acids in Cordyceps fungi. The proposed MEKC method had linear calibration curves and detection limits at the μmol/L level. Contents of aromatic amino acids in Cordyceps were found in the range from 0.004 9 % to 0.028 0% for tryptophan (Trp), 0.036 6% to 0.078 1% for tyrosine (Tyr), and 0.029 1% to 0.136 2% for phenylalanine (Phe). Levels of amino acids in cultivated Cordyceps militaris were found higher than those in natural Cordyceps sinensis. Interestingly, the ratio of Tyr to its precursor, Phe, in C. sinensis (1.20 ± 0.091, n=3) was significantly higher than that in cultivated C. militaris (0.54 ± 0.170, n=3). This is likely because the enzyme-catalyzed in vivo biotransformation of Phe to Tyr is much more effective in natural C. sinensis, a biological hybrid of larva and parasitic fungus, than in cultivated C. militaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das S K, Masuda M, Sakurai A, et al. Medicinal uses of the mushroom Cordyceps militaris: Current state and prospects [J]. Fitoterapia, 2010, 81(8): 961–968.

    Article  PubMed  Google Scholar 

  2. Chen P X, Wang S A, Nie S P, et al. Properties of Cordyceps sinensis: A review [J]. Journal of Functional Foods, 2013, 5(2): 550–569.

    Article  CAS  Google Scholar 

  3. Zhou X W, Gong Z H, Ying S, et al. Cordyceps fungi: Natural products, pharmacological functions and developmental products [J]. Journal of Pharmacy and Pharmacology, 2009, 61(3): 279–291.

    Article  CAS  PubMed  Google Scholar 

  4. Yue K, Ye M, Zhou Z, et al. The genus Cordyceps: A chemical and pharmacological review [J]. Journal of Pharmacy and Pharmacology, 2013, 65(4): 474–493.

    Article  CAS  PubMed  Google Scholar 

  5. Chang Y, Hsu W H, Lu W J, et al. Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordy-ceps sinensis, in platelet activation [J]. Current Pharmaceutical Biotechnoly, 2015, 16(5): 451–461.

    Article  CAS  Google Scholar 

  6. Nakamura K, Shinozuka K, Yoshikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis [J]. Journal of Pharmacology Science, 2015, 127(1): 53–56.

    Article  CAS  Google Scholar 

  7. Zhang H W, Lin Z X, Tung Y S, et al. Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease [J]. Cochrane Database Systematic Reviews, 2014, 12(12): CD008353.

    Google Scholar 

  8. Paterson R R. Cordyceps—A traditional Chinese medicine and another fungal therapeutic biofactory [J]. Phytochemistry, 2008, 69(7): 1469–1495.

    Article  CAS  PubMed  Google Scholar 

  9. Shao P L, Zhao K J, Zhao N J, et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury [J]. Life Sciences, 2003, 73(19): 2503–2513.

    Article  CAS  Google Scholar 

  10. Hur H. Chemical ingredients of Cordyceps militaris [J]. Mycobiology, 2008, 36(4): 233–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang H, Zhong J, Xie Q. Review of quality control methods for Cordyceps [J]. China Pharmacy, 2010, 19: 88–90 (Ch).

    Google Scholar 

  12. Wang J, Kan L, Nie S, et al. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultivated Cordyceps sinensis [J]. LWT-Food Science and Technology, 2015, 63(1): 2–7.

    Article  CAS  Google Scholar 

  13. Pencharz P B, Hsu J W, Ball R O. Aromatic amino acid requirements in healthy human subjects [J]. Journal of Nutrition, 2007, 137(6 Suppl 1): 1576S–1578S.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Xie J, Wang L, et al. Advanced development in chemical analysis of Cordyceps [J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87(18): 271–289.

    Article  CAS  PubMed  Google Scholar 

  15. Huang L F, Liang Y Z, Guo F Q, et al. Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militarris by LC/ESI-MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(5): 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  16. Hu H, Xiao L, Zheng B, et al. Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(26): 8059–8066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei X, Xu N, Wu D, et al. Determination of branched-amino acid content in fermented Cordyceps sinensis mycelium by using FT-NIR spectroscopy technique [J]. Food and Biopro-cess Technology, 2014, 7(1): 184–190.

    Article  CAS  Google Scholar 

  18. Široká J, Martincová A, Pospíšilová M, et al. Assay of citrus flavonoids, troxerutin, and ascorbic acid in food supplements and pharmaceuticals by capillary zone electrophoresis [J]. Food Analytical Methods, 2013, 6(6): 1561–1567.

    Article  Google Scholar 

  19. Deeb S E, Wätzig H, El-Hady D A, et al. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis [J]. Electrophoresis, 2014, 35(1): 170–189.

    Article  CAS  PubMed  Google Scholar 

  20. Yuan J, Cheng X, Hou Y. Studies on the components and pharmacological action of polysaccharide from Cordyceps sinensis [J]. Food Drug, 2005, 7(1): 45–48.

    Google Scholar 

  21. Mao X B, Eksriwong T, Chauvatcharin S, et al. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris [J]. Process Biochemistry, 2005, 40(5): 1667–1672.

    Article  CAS  Google Scholar 

  22. Kim S W, Hwang H J, Xu C P, et al. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738 [J]. Journal of Applied Microbiology, 2003, 94(1): 120–126.

    Article  PubMed  Google Scholar 

  23. Dong J Z, Lei C, Ai X R, et al. Selenium enrichment on Cordyceps militaris link and analysis on its main active components [J]. Applied Biochemistry and Biotechnology, 2012, 166(5): 1215–1224.

    Article  CAS  PubMed  Google Scholar 

  24. Hsu T H, Shiao L H, Hsieh C, et al. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis [J]. Food Chemistry, 2002, 78(4): 463–469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hankun Hu.

Additional information

Foundation item: Supported by Zhongnan Hospital of Wuhan University Science, Technology, and Innovation Seed Fund (cxpy2017023), and the TCM Research Project of Hubei Provincial Health Commission (ZY2019M033)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Su, Y., Hu, H. et al. Quantification of Aromatic Amino Acids in Cordyceps fungi by Micellar Electrokinetic Capillary Chromatography. Wuhan Univ. J. Nat. Sci. 24, 245–250 (2019). https://doi.org/10.1007/s11859-019-1393-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-019-1393-7

Key words

CLC number

Navigation