Skip to main content
Log in

Nanoliter scale microloop reactor with rapid mixing ability for biochemical reaction

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The mixing rate is a crucial factor in determining the reaction rate and product distribution in reactors for academic and industrial application. Especially, in pharmaceutical or dangerous chemistry, it is essential to create rapidly homogeneous mixture under the control of a small volume of precious sample. In this study, we propose a microloop reactor that is capable of rapid mixing for homogeneous reaction by utilizing programmable actuated microvalves (PAVs), which can generate the rotary flow rapid mixing in the reactor. The microloop reactor is composed of a stacked layered structure, which is prepared by a soft lithography method. The top layer (fluidic layer) has microchannels for supplying each reagent that is assembled with the bottom layer (control layer). The bottom layer has ultrathin polymer membrane, which can be an on-off valve to precisely control the nanoliter-scale volume of reagents in the reactor. To evaluate mixing performance, we use peroxidase reaction that produces fluorescent by-product (resorufin), thereby observing how fast they are mixed together. We quantify the uniformity of fluorescent intensity throughout the reaction loop, indicating that our proposed microloop reactor exhibits a homogeneous reaction. We envision the microreactor has potential to provide optimized microenvironments in which to perform dangerous chemistry, pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. deMello, Nature, 442, 394 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton and A. J. deMello, Nat. Chem., 5, 905 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. C. C. Lee, G. Sui, A. Elizarov, C. J. Shu, Y. S. Shin, A. N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H. C. Kolb, O. N. Witte, N. Satyamurthy, J. R. Heath, M. E. Phelps, S. R. Quake and H. R. Tseng, Science, 310, 1793 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. I. Jang and S. Song, Lab. Chip, 15, 3405 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. K. Y. Ko and I. H. Kim, Biotechnol. Bioprocess Eng., 21, 453 (2016).

    Article  CAS  Google Scholar 

  6. H. H. Jeong, D. Issadore and D. Lee, Korean J. Chem. Eng., 33, 1757 (2016).

    Article  CAS  Google Scholar 

  7. R. Singh, H. J. Lee, A. K. Singh and D. P. Kim, Korean J. Chem. Eng., 33, 2253 (2016).

    Article  CAS  Google Scholar 

  8. S. Andarwa and H. B. Tabrizi, Korean J. Chem. Eng., 34, 1319 (2017).

    Article  CAS  Google Scholar 

  9. J. J. Zhong, Korean J. Chem. Eng., 27, 1035 (2010).

    Article  CAS  Google Scholar 

  10. S. H. Jin, J. -H. Jung, S. -G. Jeong, J. Kim, T. J. Park and C. -S. Lee, Front. Chem. Sci. Eng., 12, 239 (2017).

    Article  CAS  Google Scholar 

  11. N. Kockmann, M. Gottsponer, B. Zimmermann and D. M. Roberge, Chemistry-a European J., 14, 7470 (2008).

    Article  CAS  Google Scholar 

  12. M. Rahimi, P. Valeh-e-Sheyda and H. Rashidi, Korean J. Chem. Eng., 34, 3017 (2017).

    Article  CAS  Google Scholar 

  13. J. J. Sim, H. J. Moon, Y. H. Roh, H. W. Jung and K. W. Bong, Korean J. Chem. Eng., 34, 1495 (2017).

    Article  CAS  Google Scholar 

  14. T. H. Tran, W. J. Chang, Y. B. Kim, Y. M. Koo, E. K. Kim, J. Y. Yoon and J. Kim, Biotechnol. Bioprocess Eng., 12, 470 (2007).

    Article  CAS  Google Scholar 

  15. G. M. Whitesides, Nature, 442, 368 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. L. F. Kang, B. G. Chung, R. Langer and A. Khademhosseini, Drug Discovery Today, 13, 1 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. S. G. You and S. J. Bai, Biotechnol. Bioprocess Eng., 22, 474 (2017).

    Article  CAS  Google Scholar 

  18. A. Liau, R. Karnik, A. Majumdar and J. H. D. Cate, Anal. Chem., 77, 7618 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. C. L. Grigsby, Y. P. Ho, C. Lin, J. F. J. Engbersen and K. W. Leong, Scientific Reports, 3, 3155 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. C. Y. Lee, C. L. Chang, Y. N. Wang and L. M. Fu, Int. J. Mol. Sci., 12, 3263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Z. Y. Zhang, P. Zhao, G. Z. Xiao, M. Lin and X. D. Cao, Biomicrofluidics, 2, 014101 (2018).

    Article  CAS  Google Scholar 

  22. K. -K. Kang and C. -S. Lee, ACS Central Sci., 4, 434 (2018).

    Article  CAS  Google Scholar 

  23. C. L. Hansen, M. O. A. Sommer and S. R. Quake, Proceedings of the National Academy of Sciences of the United States of America, 101, 14431 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. K. Ridgeway, E. Seitaridou, R. Phillips and J. R. Williamson, Nucleic Acids Res., 37, 142 (2009).

    Article  CAS  Google Scholar 

  25. S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss and D. S. Majumdar, Nature Methods, 8, 242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. H. Jin, S. S. Lee, B. Lee, S. G. Jeong, M. Peter and C. S. Lee, Anal. Chem., 89, 9722 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. S. H. Jin, S. C. Jang, B. Lee, H. H. Jeong, S. G. Jeong, S. S. Lee, K. P. Kim and C. S. Lee, Lab on a Chip, 16, 1358 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. H. H. Jeong, B. Lee, S. H. Jin, S. G. Jeong and C. S. Lee, Lab on a Chip, 16, 1698 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. H. H. Jeong, S. H. Jin, B. J. Lee, T. Kim and C. S. Lee, Lab on a Chip, 15, 889 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. M. Su, Korean J. Chem. Eng., 34, 484 (2017).

    Article  CAS  Google Scholar 

  31. S. Jung and H. Yi, Korean J. Chem. Eng., 32, 1713 (2015).

    Article  CAS  Google Scholar 

  32. S. Jung, Y. Tang, G. Shim, C. -S. Lee, C. -H. Choi and H. Yi, Biochem. Eng. J., 135, 123 (2018).

    Article  CAS  Google Scholar 

  33. J. Kim, S. H. Jin, K. -K. Kang, Y. -M. Chung and C. -S. Lee, Chem. Eng. Sci., 175, 168 (2018).

    Article  CAS  Google Scholar 

  34. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, Science, 288, 113 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. J. W. Hong, V. Studer, G. Hang, W. F. Anderson and S. R. Quake, Nature Biotechnol., 22, 435 (2004).

    Article  CAS  Google Scholar 

  36. M. J. Zhou, Z. J. Diwu, N. PanchukVoloshina and R. P. Haugland, Anal. Biochem., 253, 162 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. M. Razzaghi, A. Karimi, H. Aghdasinia and M. -T. Joghataei, Korean J. Chem. Eng., 34, 2870 (2017).

    Article  CAS  Google Scholar 

  38. S. Miwa, A. Treumann, A. Bell, G. Vistoli, G. Nelson, S. Hay and T. von Zglinicki, Free Radical Biology and Medicine, 90, 173 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. B. Z. Zhao, F. A. Summers and R. P. Mason, Free Radical Biol. Medicine, 53, 1080 (2012).

    Article  CAS  Google Scholar 

  40. Y. Jo, K. Kim and J. Choi, Biotechnol. Bioprocess Eng., 21, 191 (2016).

    Article  CAS  Google Scholar 

  41. Y. G. Shen, Z. Y. Song, Y. M. Yan, Y. X. Song, X. X. Pan and Q. Wang, Micromachines, 8, 172 (2017).

    Article  PubMed Central  Google Scholar 

  42. N. T. Nguyen, M. Hejazian, C. H. Ooi and N. Kashaninejad, Micromachines, 8, 186 (2017).

    Article  PubMed Central  Google Scholar 

  43. K. I. A. Ieong, C. P. Yang, C. T. Wong, A. C. Shui, T. T. Y. Wu, T. H. Chen and R. H. W. Lam, Micromachines, 8, 167 (2017).

    Article  Google Scholar 

  44. K. -K. Kang and H. -K. Rhee, Micropor. Mesopor. Mater., 257, 202 (2018).

    Article  CAS  Google Scholar 

  45. K. S. Elvira, X. C. i Solvas and R. C. Wootton, Nature Chemistry, 5, 905 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. A. Einstein, Investigations on the theory of the Brownian movement, Dover Publications, New York (1956).

    Google Scholar 

  47. B. Fu, F. R. Curry, R. H. Adamson and S. Weinbaum, Ann. Biomed. Eng., 25, 375 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. F. Antunes and P. M. Brito, Redox Biol., 13, 1 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Hyung Choi or Chang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, SG., Jeong, JH., Kang, KK. et al. Nanoliter scale microloop reactor with rapid mixing ability for biochemical reaction. Korean J. Chem. Eng. 35, 2036–2042 (2018). https://doi.org/10.1007/s11814-018-0110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0110-0

Keywords

Navigation