Skip to main content
Log in

Geographical origin discrimination of edible bird’s nests using smart handheld device based on colorimetric sensor array

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A smart handheld device based on colorimetric sensor array and smart cellphone was constructed to discriminate geographical origins of edible bird’s nest (EBN). Three hundred and twenty EBN samples were collected from Malaysia and Indonesia. The colorimetric sensor array consists of chemo-response dyes and was used to capture the odor molecule. The smart cellphone was used to obtain images and to extract red, green and blue colors using in-house software before and after contact with each sample. The differences in the nutritional (carbohydrate, protein and Sialic acid) and volatile components (VCs) between Malaysian and Indonesian EBNs were measured by conventional chemical methods. The colorimetric sensor arrays showed a unique pattern of color changes upon its exposure to EBN from different geographical origins. Data analysis was performed using pattern recognition algorithms including principal component analysis (PCA), Hierarchical cluster analysis (HCA), and partial least square regression (PLSR). The PCA and HAC were applied to investigate the similarity between sample groups. The PLS model was developed to demonstrate the relation between colorimetric responses and characteristic VCs of EBN. For the PLS model, the value of correlation coefficient is higher than 0.86 in calibration and prediction set. Results demonstrated that the smart handheld device was capable for geographical origin discrimination of EBN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.C. Quek, N.L. Chin, Y.A. Yusof, C.L. Law, S.W. Tan, Characterization of edible bird’s nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. Food Res. Int. 109, 35–43 (2018)

    Article  CAS  Google Scholar 

  2. E.K.S. Shim, G.F. Chandra, S. Pedireddy, S.-Y. Lee, Characterization of swiftlet edible bird nest, a mucin glycoprotein, and its adulterants by Raman microspectroscopy. J. Food Sci. Technol. 53(9), 3602–3608 (2016)

    Article  CAS  Google Scholar 

  3. F. Ma, D. Liu, Sketch of the edible bird’s nest and its important bioactivities. Food Res. Int. 48(2), 559–567 (2012)

    Article  CAS  Google Scholar 

  4. Y. Yu-Qin, X. Liang, W. Hua, Z. Hui-Xing, Z. Xin-Fang, L. Bu-Sen, Determination of edible bird’s nest and its products by gas chromatography. J. Chromatogr. Sci. 38(1), 27–32 (2000)

    Article  CAS  Google Scholar 

  5. L. Qi Hao, O. Abdul Rahman, Swiftlets and edible bird’s nest industry in Asia. Pertanika J. Schol. Res. Rev. 2 (1), 32–48 (2016)

    Google Scholar 

  6. H.-K. Kong, K.-H. Wong, S.C.-L. Lo, Identification of peptides released from hot water insoluble fraction of edible bird’s nest under simulated gastro-intestinal conditions. Food Res. Int. 85, 19–25 (2016)

    Article  CAS  Google Scholar 

  7. T.H. Lee, W.A. Wani, Y.S. Koay, S. Kavita, E.T.T. Tan, S. Shreaz, Recent advances in the identification and authentication methods of edible bird’s nest. Food Res. Int. 100, 14–27 (2017)

    Article  CAS  Google Scholar 

  8. M.C. Quek, N.L. Chin, Y.A. Yusof, C.L. Law, S.W. Tan, Pattern recognition analysis on nutritional profile and chemical composition of edible bird’s nest for its origin and authentication. Int. J. Food Prop. 21(1), 1680–1696 (2018)

    Article  CAS  Google Scholar 

  9. E.K. Seow, B. Ibrahim, S.A. Muhammad, L.H. Lee, J. Lalung, L.H. Cheng, Discrimination between cave and house-farmed edible bird’s nest based on major mineral profiles. Pertanika J. Trop. Agric. Sci. 39(2), 181–195 (2016)

    Google Scholar 

  10. A. Ziółkowska, E. Wąsowicz, H.H. Jeleń, Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods. Food Chem. 213, 714–720 (2016)

    Article  Google Scholar 

  11. Y. Wu, Y. Chen, B. Wang, L. Bai, W.R. Han, Y. Ge, F. Yuan, Application of SYBR green PCR and 2DGE methods to authenticate edible bird’s nest food. Food Res. Int. 43(8), 2020–2026 (2010)

    Article  CAS  Google Scholar 

  12. L. Guo, Y. Wu, M. Liu, B. Wang, Y. Ge, Y. Chen, Determination of edible bird’s nests by FTIR and SDS-PAGE coupled with multivariate analysis. Food Control 80, 259–266 (2017)

    Article  CAS  Google Scholar 

  13. G. Lili, Study on the Application of Representative Characteristics Recognition Technology in Authentication of Edible Bird’s Nest (China Agricultural University, M1 - Ph.D., Beijing, 2014)

    Google Scholar 

  14. M.C. Quek, N.L. Chin, S.W. Tan, Y.A. Yusof, C.L. Law, Molecular identification of species and production origins of edible bird’s nest using FINS and SYBR green I based real-time PCR. Food Control 84, 118–127 (2018)

    Article  CAS  Google Scholar 

  15. L. Guo, Y. Wu, M. Liu, Y. Ge, Y. Chen, Rapid authentication of edible bird’s nest by FTIR spectroscopy combined with chemometrics. J. Sci. Food Agric. 98(8), 3057–3065 (2018)

    CAS  PubMed  Google Scholar 

  16. J. Shi, Z. Fang, Z. Li, X. Huang, X. Zou, Z. Wen, M. Holmes, C. Ying, Rapid authentication of Indonesian edible bird’s nests by near-infrared spectroscopy and chemometrics. Anal. Methods 9(8), 1297–1306 (2017)

    Article  CAS  Google Scholar 

  17. M.Y. Koay, S.X.C. Loh, K.M. Goh, W.K. Lai, Feature Selection for Automated Grading of Edible Birds Nest with ANFIS (ACM, New York, 2018), pp. 25–32

    Google Scholar 

  18. E. Shim, S.-Y. Lee, Raman microspectroscopy is a rapid technique to authenticate edible bird’s nest-a glycoprotein. 29, 10–13 (2017)

  19. N.A. Tukiran, A. Ismail, S. Mustafa, M. Hamid, Determination of porcine gelatin in edible bird’s nest by competitive indirect ELISA based on anti-peptide polyclonal antibody. Food Control 59, 561–566 (2016)

    Article  CAS  Google Scholar 

  20. M.S. Lee, J.Y. Huang, Y.Y. Lien, S.C. Sheu, The rapid and sensitive detection of edible bird’s nest (Aerodramus fuciphagus) in processed food by a loop-mediated isothermal amplification (LAMP) assay. J. Food Drug Anal. 27(1), 154–163 (2019)

    Article  CAS  Google Scholar 

  21. E.K.S. Shim, G.F. Chandra, S.Y. Lee, Thermal analysis methods for the rapid identification and authentication of swiftlet (Aerodramus fuciphagus) edible bird’s nest: a mucin glycoprotein. Food Res. Int. 95, 9–18 (2017)

    Article  CAS  Google Scholar 

  22. N. Jornet-Martínez, R. Gómez-Ojea, O. Tomás-Huercio, R. Herráez-Hernández, P. Campíns-Falcó, Colorimetric determination of alcohols in spirit drinks using a reversible solid sensor. Food Control 94, 7–16 (2018)

    Article  Google Scholar 

  23. H. Qin, D. Huo, L. Zhang, L. Yang, S. Zhang, M. Yang, C. Shen, C. Hou, Colorimetric artificial nose for identification of Chinese liquor with different geographic origins. Food Res. Int. 45(1), 45–51 (2012)

    Article  Google Scholar 

  24. J. Li, B. Fu, D. Huo, C. Hou, M. Yang, C. Shen, H. Luo, P. Yang, Discrimination of Chinese teas according to major amino acid composition by a colorimetric IDA sensor. Sens. Actuator B. 240, 770–778 (2017)

    Article  CAS  Google Scholar 

  25. H.E. Tahir, Z. Xiaobo, H. Xiaowei, S. Jiyong, A.A. Mariod, Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques. Food Chem. 206, 37–43 (2016)

    Article  CAS  Google Scholar 

  26. H. Xiao-wei, Z. Xiao-bo, S. Ji-yong, L. Zhi-hua, Z. Jie-wen, Colorimetric sensor arrays based on chemo-responsive dyes for food odor visualization. Trends Food Sci. Technol. 81, 90–107 (2018)

    Article  CAS  Google Scholar 

  27. E.-K. Seow, B. Ibrahim, S.A. Muhammad, L.H. Lee, L.-H. Cheng, Differentiation between house and cave edible bird’s nests by chemometric analysis of amino acid composition data. LWT-Food Sci Technol. 65, 428–435 (2016)

    Article  CAS  Google Scholar 

  28. W. Saengkrajang, N. Matan, N. Matan, Nutritional composition of the farmed edible bird’s nest (Collocalia fuciphaga) in Thailand. J. Food Compos. Anal. 31(1), 41–45 (2013)

    Article  CAS  Google Scholar 

  29. M. Yang, S.-H. Cheung, S.C. Li, H.-Y. Cheung, Establishment of a holistic and scientific protocol for the authentication and quality assurance of edible bird’s nest. Food Chem. 151, 271–278 (2014)

    Article  CAS  Google Scholar 

  30. J. Shi, X. Hu, X. Zou, J. Zhao, W. Zhang, M. Holmes, X. Huang, Y. Zhu, Z. Li, T. Shen, X. Zhang, A rapid and nondestructive method to determine the distribution map of protein, carbohydrate and sialic acid on edible bird’s nest by hyper-spectral imaging and chemometrics. Food Chem. 229, 235–241 (2017)

    Article  CAS  Google Scholar 

  31. Y.G. Chua, B.C. Bloodworth, L.P. Leong, S.F.Y. Li, Metabolite profiling of edible bird’s nest using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectr.28(12), 1387–1400 (2014)

    Article  CAS  Google Scholar 

  32. N.A. Rakow, K.S. Suslick, A colorimetric sensor array for odour visualization. Nature 406(6797), 710–713 (2000)

    Article  CAS  Google Scholar 

  33. Q. Chen, A. Liu, J. Zhao, Q. Ouyang, Classification of tea category using a portable electronic nose based on an odor imaging sensor array. J. Pharm. Biomed. 84, 77–83 (2013)

    Article  CAS  Google Scholar 

  34. H. Xiaowei, Z. Xiaobo, Z. Jiewen, S. Jiyong, L. Zhihua, S. Tingting, Monitoring the biogenic amines in Chinese traditional salted pork in jelly (Yao-meat) by colorimetric sensor array based on nine natural pigments. J. Food Sci. Technol. 50, 203–209 (2015)

    Article  Google Scholar 

  35. H. Xiao-wei, L. Zhi-hua, Z. Xiao-bo, S. Ji-yong, M. Han-ping, Z. Jie-wen, H. Li-min, M. Holmes, Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays. Food Chem. 197, 930–936 (2016)

    Article  Google Scholar 

  36. L. KeKeHui, Topographic map of Southeast Asia.

  37. P. Wheeler, N. White, Measuring dynamic topography: an analysis of Southeast Asia. Tectonics 21(5), 149–167 (2002)

    Article  Google Scholar 

  38. Q. Chen, A. Liu, J. Zhao, Q. Ouyang, Z. Sun, L. Huang, Monitoring vinegar acetic fermentation using a colorimetric sensor array. Sens. Actuator B. 183, 608–616 (2013)

    Article  CAS  Google Scholar 

  39. X. Huang, X. Zou, J. Zhao, J. Shi, X. Zhang, Z. Li, L. Shen, Sensing the quality parameters of Chinese traditional Yao-meat by using a colorimetric sensor combined with genetic algorithm partial least squares regression. Meat Sci. 98(2), 203–210 (2014)

    Article  CAS  Google Scholar 

  40. X.W. Huang, X.B. Zou, J.Y. Shi, Y. Guo, J.W. Zhao, J. Zhang, L. Hao, Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chem. 145(15), 549–554 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by the National Key Research and Development Program of China (2017YFC1600806); National Natural Science Foundation of China (31601543, 31801631, 31671844); Natural Science Foundation of Jiangsu Province (BK20160506, BK20180865).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihua Li or Zou Xiaobo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, Z., Xiaobo, Z. et al. Geographical origin discrimination of edible bird’s nests using smart handheld device based on colorimetric sensor array. Food Measure 14, 514–526 (2020). https://doi.org/10.1007/s11694-019-00251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00251-z

Keywords

Navigation