Skip to main content
Log in

Annealing Impact on Emission of InAs Quantum Dots in GaAs/Al0.30Ga0.70As Structures with Different Capping Layers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The impact of annealing on the emission of InAs quantum dots (QDs) has been investigated in the GaAs/Al0.30Ga0.70As structures with different compositions of the quantum well (QW) layers covered of QDs: GaAs or Al0.10Ga0.75In0.15As. The heat treatments of the QD structures were carried out at 640°C or 710°C for 2 h in an argon atmosphere. To estimate the compositions of QDs and capping QWs, photoluminescence (PL) and high-resolution X-ray diffraction have been applied. The QD structure with the Al0.1Ga0.75In0.15As capping QWs has been characterized by a lower energy of the ground state emission (≈ 1.30 µm, 300°K), its highest intensity and the smaller full width at half maximum, compared to the QD structure with GaAs capping QWs. The extinction of the integrated PL intensity about 80 times was detected in the range 10–400 K for the QD structure with Al0.10Ga0.75In0.15As capping compared to this extinction more than 1000 times detected in the QD structure with GaAs capping. The advantages obtained in the QD structure with Al0.1Ga0.75In0.15As capping are attributed to the lower mismatch and stresses at the capping QW/InAs QD interfaces, as well as the higher chemical binding energy of the Al-As bonds, compared to their value for Ga-As, which decreases the interdiffusion efficiency of the Ga/In atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.Y. Liu, C. Zhang, and J. Norman, Appl. Phys. Lett. 104, 041104 (2014).

    Article  Google Scholar 

  2. T.V. Torchynska, and A. Stintz, J. Appl. Phys. 108, 024316 (2010).

    Article  Google Scholar 

  3. W. Zhou, and J.J. Coleman, Curr. Opin. Solid State Mater. Sci. 20, 352 (2016).

    Article  CAS  Google Scholar 

  4. V.P. Deviprasad, Sh. Mondal, S. Paul, B. Tongbram, D. Dasc, D. Pandac, and S. Chakrabartic, Infrared Phys. Technol. 103, 103079 (2019).

    Article  CAS  Google Scholar 

  5. S. Adhikary, and S. Chakrabarti, Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors (Singapore: Springer, 2018), pp. 23–31.

    Book  Google Scholar 

  6. M.V. Rakhlin, K.G. Belyaev, G.V. Klimko, I.S. Mukhin, D.A. Kirilenko, T.V. Shubina, S.V. Ivanov, and A.A. Toropov, Sci. Rep. 8, 5299 (2018).

    Article  CAS  Google Scholar 

  7. E.C. Weiner, R. Jakomin, D.N. Micha, H. Xie, P.T. Su, L.D. Pinto, M.P. Pires, F.A. Ponce, and P.L. Souza, Sol. Energy Mater. Sol. Cells 178, 240 (2018).

    Article  CAS  Google Scholar 

  8. H. Boustanji, S. Jaziria, and J.L. Lazzari, Sol. Energy Mater. Sol. Cells 159, 633 (2017).

    Article  CAS  Google Scholar 

  9. H.W. Li, B.E. Kardyna, D.J.P. Ellis, A.J. Shields, I. Farrer, and D.A. Ritchie, Appl. Phys. Lett. 93, 153503 (2008).

    Article  Google Scholar 

  10. A. Stintz, G.T. Liu, L. Gray, R. Spillers, S.M. Delgado, and K.J. Malloy, J. Vac. Sci. Technol. B 18, 1496 (2000).

    Article  CAS  Google Scholar 

  11. S. Mukherjee, A. Pradhan, S. Mukherjee, T. Maitra, S. Sengupta, S. Chakrabarti, A. Nayak, and S. Bhunia, J. Lumin. 215, 116597 (2019).

    Article  CAS  Google Scholar 

  12. J.J. Dubowski, R. Stanowski, D. Dalacu, and P.J. Poole, Opt. Laser Technol. 103, 382 (2018).

    Article  CAS  Google Scholar 

  13. T. Torchynska, J. Appl. Phys. 104, 074315 (2008).

    Article  Google Scholar 

  14. T.V. Torchynska, J.L. Casas Espinola, L.V. Borkovska, S. Ostapenko, M. Dybic, O. Polupan, N.O. Korsunska, A. Stintz, P.G. Eliseev, and K.J. Malloy, J. Appl. Phys. 101, 024323 (2007).

    Article  Google Scholar 

  15. P. Yu, J. Leem, M. Jeon, S. Noh, J.H. Lee, G. Kim, S. Kang, J.S. Kim, and S. Kim, J. Appl. Phys. 91, 5055 (2002).

    Article  Google Scholar 

  16. H. Liu, I.R. Sellers, M. Hopkinson, C. Harrison, D.J. Mowbray, and M.S. Skolnick, Appl. Phys. Lett. 83, 3716 (2003).

    Article  CAS  Google Scholar 

  17. I.J. Guerrero Moreno, T.V. Torchynska, and J.L. Casas Espinola, Phys. E. 51, 37 (2013).

    Article  CAS  Google Scholar 

  18. D. Das, H. Ghadi, B. Tongbram, S.M. Singh, and S. Chakrabarti, J. Lumin. 192, 277 (2017).

    Article  CAS  Google Scholar 

  19. R. CisnerosTamayo, I.J. GuerreroMoreno, G. Polupan, T.V. Torchynska, and J. PalaciosGomez, J. Lumin. 149, 1 (2014).

    Article  CAS  Google Scholar 

  20. J. Saha, D. Panda, D. Das, V. Chavan, and S. Chakrabarti, J. Lumin. 197, 297 (2018).

    Article  CAS  Google Scholar 

  21. H. Kim, W. Wei, T.F. Kuech, P. Gopalan, and L.J. Mawst, Semicond. Sci. Technol. 34, 025012 (2019).

    Article  CAS  Google Scholar 

  22. The Ioffe Physical-Technical Institute of the Russian Academy Sciences web page: http://www.ioffe.ru/SVA/NSM/Semicond/index.html.

  23. G. Polupan, T. Torchynska, L.G. Vega Macotela, R. Cisneros Tamayo, and A. Escobosa Echavarría, J. Mater. Sci. Mater. Electron. 31, 2643 (2020).

    Article  CAS  Google Scholar 

  24. T. Torchynska, R. Cisneros-Tamayo, L.G. Vega-Macotel, G. Polupana, and A. Escobosa-Echavarria, Superlat. Microstr. 124, 153 (2018).

    Article  CAS  Google Scholar 

  25. J. Saha, D. Panda, B. Tongbram, D. Das, V. Chavan, and S. Chakrabarti, J. Lumin. 210, 75 (2019).

    Article  CAS  Google Scholar 

  26. R. Cisneros Tamayo, G. Polupan, T.V. Torchynska, L.G. Vega-Macotela, A. Stintz, and A. Escobosa Echavarria, Mat. Scien. Semicon. Process. 90, 212 (2019).

    Article  CAS  Google Scholar 

  27. X. Zhao, P. Wang, Ch. Cao, J. Yan, F. Zha, H. Wang, and Q. Gong, J. Cryst. Growth 480, 115 (2017).

    Article  CAS  Google Scholar 

  28. J.S. Peng, B. Xu, X.I. Ye, P. Jin, and Z.C. Wang, Microelectron. Eng. 93, 1 (2012).

    Article  CAS  Google Scholar 

  29. T. Srinivazan, and S.N. Singh, U Tivari J. Crystal Growth 280, 378 (2005).

    Article  Google Scholar 

  30. Q.D. Zhuang, J.M. Li, Y.P. Zeng, S.F. Yoon, H.Q. Zheng, M.Y. Kong, and L.Y. Lin, J. Cryst. Growth 212, 352 (2000).

    Article  CAS  Google Scholar 

  31. L.G. Vega-Macotela, T.V. Torchynska, and G. Polupan, J. Mater. Sci. Mater. Electron. 28, 7126 (2017).

    Article  CAS  Google Scholar 

  32. L.G. Vega-Macotela, T.V. Torchynska, and G. Polupan, J. Mater. Sci. Mater. Electron. 28, 17778 (2017).

    Article  CAS  Google Scholar 

  33. P. Mukhopadhyay, P. Das, S. Pathak, E. Y. Chang, and D. Biswas. Intern. Conference CSMANTECH, Indian Wells, CA, USA, May 16–19, 2011.

  34. T. Torchynska, L. Khomenkova, and N.E. Korsunska, Phys. B 273–274, 955 (1999).

    Article  Google Scholar 

  35. S. Fafard, C.N. Allen, D. Picard, M. Spanner, and P.G. Piva, Phys. Rev. B 59, 15368 (1999).

    Article  CAS  Google Scholar 

  36. D. Bimberg, M. Grundman, and N.N. Ledentsov, Quantum Dot Heterostructures (New York: Wiley, 2001).

    Google Scholar 

  37. T.V. Torchynska, and Y. Vorobiev eds., Nanocrystals and Quantum Dots of Group IV Semiconductors. (Stevenson Ranch: American Scientific Publisher, 2010)., pp. 1–41.

    Google Scholar 

  38. W. Li, S. Chen, J. Wu, A. Li, M. Tang, L. Yang, Y. Chen, A. Seeds, H. Liu, and I. Ross, J. Appl. Phys. 125, 135301 (2019).

    Article  Google Scholar 

  39. Y.P. Varshni, Physica 34, 149 (1967).

    Article  CAS  Google Scholar 

  40. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  CAS  Google Scholar 

  41. https://www.researchgate.net/figure/Bond-dissociation-energy-kcal-mol-in-III-V-compound-semiconductors_tbl1_264743543.

Download references

Acknowledgments

The authors appreciate the financial support of the CONACYT Mexico (pt. 258224), SIP-IPN, Mexico (pt. 20210400), and thank the Dr. A Stintz in the Center of high technology materials (CHTM) at the University of New Mexico, Albuquerque, NM, for the growth of studied QD structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Torchynska.

Ethics declarations

Conflict of interest

The authors declare and confirm that they have not any conflict of interests: no financial/personal interest or belief that could affect their objectivity. The author Tetyana Torchynska has received the research grant from the CONACYT Mexico (No. 258224) and SIP-IPN, Mexico (No. 20210400).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torchynska, T.V., Tamayo, R.C., Polupan, G. et al. Annealing Impact on Emission of InAs Quantum Dots in GaAs/Al0.30Ga0.70As Structures with Different Capping Layers. Journal of Elec Materi 50, 4633–4641 (2021). https://doi.org/10.1007/s11664-021-09007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09007-2

Keywords

Navigation