Skip to main content
Log in

Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Dotzler, G.V.M. Williams, and A. Edgar, Curr. Appl. Phys. 8, 447 (2008).

    Article  Google Scholar 

  2. S. Sharma, N. Weiden, and A. Weiss, Z. Naturforsch. A 42, 1313 (1987).

    Article  Google Scholar 

  3. T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, D.A. Pawlak, K. Shimamura, and T. Fakuda, Jpn. J. Appl. Phys. 41, L365 (2002).

    Article  Google Scholar 

  4. G. Kresse and J. Furthmüller, VASP the GUIDE (Vienna: Technische Universität Wien, 2001).

    Google Scholar 

  5. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  6. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  7. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  8. S. Syrotyuk and V. Shved, Int. Conf. Oxide Mater. (OMEE) 54, 26 (2014).

    Google Scholar 

  9. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 1 (1998).

    Google Scholar 

  10. H. Ali Reshak, RSC Adv. 4, 39565 (2014).

    Article  Google Scholar 

  11. H. Ali Reshak, RSC Adv. 4, 63137 (2014).

    Article  Google Scholar 

  12. H. Rached, D. Rached, S. Benalia, A.H. Reshak, M. Rabah, R. Khenata, and S. Bin Omran, Mater. Chem. Phys. 143, 93 (2013).

    Article  Google Scholar 

  13. S. Gao, Comput. Phys. Commun. 153, 190 (2003).

    Article  Google Scholar 

  14. K. Schwarz, J. Solid State Chem. 176, 319 (2003).

    Article  Google Scholar 

  15. S. Savrasov and D. Savrasov, Phys. Rev. B 46, 12181 (1992).

    Article  Google Scholar 

  16. S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996).

    Article  Google Scholar 

  17. S.Y. Savrasov, Full-potential program package, LMTART 6.50 Users Manual, New Jersey Institute of Technology (2004).

  18. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  19. W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  20. J.P. Perdew and Y. Wang, Phys. Rev. B 46, 12947 (1992).

    Article  Google Scholar 

  21. M. Hichour, D. Rached, R. Khenata, M. Rabah, M. Merabet, A.H. Reshak, S. Bin Omran, and R. Ahmed, J. Phys. Chem. Solids 73, 975 (2012).

    Article  Google Scholar 

  22. H. Rached, D. Rached, R. Khenata, S. Benalia, M. Rabaha, F. Semari, and H. Righi, Phase Transit. 84, 269 (2011).

    Article  Google Scholar 

  23. S. Benalia, M. Hachemaoui, D. Rached, R. Khenata, N. Bettahar, and M. Benyahia, J. Phys. Chem. Solids 70, 622 (2009).

    Article  Google Scholar 

  24. N. Bettahar, D. Nasri, S. Benalia, M. Merabet, B. Abidri, N. Benkhettou, R. Khenata, D. Rached, and M. Rabah, Int. J. Thermophys. 34, 434 (2013).

    Article  Google Scholar 

  25. P. Blochl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  26. F. Birch, J. Geophys. Res. 83, 1257 (1978).

    Article  Google Scholar 

  27. J.W. Flocken and R.A. Guenther, Phys. Rev. 31, 7252 (1985).

    Article  Google Scholar 

  28. H. Rached, D. Rached, R. Khenata, A.H. Reshak, and M. Rabah, Phys. Status Solidi B 246, 1580 (2009).

    Article  Google Scholar 

  29. L. Fast, J.M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 51, 17431 (1995).

    Article  Google Scholar 

  30. F.I. Fedoras, Theory of Elastic Waves in Crystals (New York: Oxford University Press, 1985).

    Google Scholar 

  31. M. Born and K. Huang, Dynamical Theory and Experiment I (Berlin: Springer, 1982).

    Google Scholar 

  32. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Article  Google Scholar 

  33. W. Voigt, Lehrbuch der Kristallphysik (Leipzig: B.G. Teubner, 1928).

    Google Scholar 

  34. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Article  Google Scholar 

  35. Z. Biskri, H. Rached, M. Bouchear, and D. Rached, J. Mech. Behav. Biomed. Mater. 32, 345 (2014).

    Article  Google Scholar 

  36. I.R. Shein and A.L. Ivanovskii, J. Phys. Condens. Mater. 20, 415218 (2008).

    Article  Google Scholar 

  37. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  38. V. Kanchana, G. Vaitheeswaran, Y. Ma, Y. Xie, A. Svane, and O. Eriksson, Phys. Rev. B 80, 125108 (2009).

    Article  Google Scholar 

  39. J. Haines, J.M. Léger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).

    Article  Google Scholar 

  40. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  Google Scholar 

  41. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973).

  42. B. Holm, R. Ahuja, Y. Yourdshahyan, B. Johanson, and B.I. Lundqvist, Phys. Rev. B 59, 12777 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rached.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmhidi, H., Rached, H., Rached, D. et al. Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3 . J. Electron. Mater. 46, 2205–2210 (2017). https://doi.org/10.1007/s11664-016-5159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5159-0

Keywords

Navigation