Skip to main content
Log in

Microstructural Evolution During Deformation of a QP980 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Quench and partitioning steels offer a valuable combination of high strength and ductility. Here we report on microstructural evolution in a QP980 steel during deformation. This is measured using a range of techniques including in-situ tensile tests coupled with scanning electron microscopy, ex-situ interrupted tensile tests coupled with electron back scattered diffraction, and X-ray diffraction measurements. Microstrain partitioning among ferrite, martensite, and retained austenite is quantified using microscopic digital image correlation. The average true strain in ferrite is approximately two and three times that in martensite and blocky retained austenite, respectively, consistent with nanohardness measurements of each phase. The combination of high strength and ductility of this steel is attributed to co-deformation of ferrite and tempered martensite. Some of the retained austenite blocks located at ferrite and martensite interfaces are almost fully transformed to martensite through transformation-induced plasticity, also contributing to ductility. Cracking of large blocky retained austenite in regions with more intense strain localization starts at relatively lower global strains. However, this appears to have little impact on the final failure process. Rather, it is the formation of large cavities in regions with higher martensite volume fraction that provides the primary mechanism of damage and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. It is important to distinguish here between true ductility, defined as the true strain at fracture and measured using the reduction in cross-sectional area at fracture, from the engineering ductility, defined as percent elongation. These can be quite different. Moreover, the elongation is sensitive to sample dimensions, in particular the gauge length, while the true ductility is not, so long as the sample dimensions are many times the grain size.

References

  1. 1. E. De Moor, S. Lacroix, A. Clarke, J. Penning and J. Speer, Metallurgical and Materials Transactions A, 2008, vol. 39, p. 2586.

    Article  Google Scholar 

  2. 2. M. Santofimia, J. Speer, A. Clarke, L. Zhao and J. Sietsma, Acta Materialia, 2009, vol. 57, pp. 4548-4557.

    Article  CAS  Google Scholar 

  3. 3. H. Li, X. Lu, W. Li and X. Jin, Metallurgical and Materials Transactions A, 2010, vol. 41, pp. 1284-1300.

    Article  Google Scholar 

  4. 4. Q. Lai, O. Bouaziz, M. Gouné, A. Perlade, Y. Bréchet and T. Pardoen, Materials Science and Engineering: A, 2015, vol. 638, pp. 78-89.

    Article  CAS  Google Scholar 

  5. 5. Q. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Bréchet and T. Pardoen, Materials Science and Engineering: A, 2015, vol. 646, pp. 322-331.

    Article  CAS  Google Scholar 

  6. 6. J. Speer, D. Matlock, B. De Cooman and J. Schroth, Acta materialia, 2003, vol. 51, pp. 2611-2622.

    Article  CAS  Google Scholar 

  7. 7. Y. Takahama, M. Santofimia, M. Mecozzi, L. Zhao and J. Sietsma, Acta Materialia, 2012, vol. 60, pp. 2916-2926.

    Article  CAS  Google Scholar 

  8. 8. D. Edmonds, K. He, F. Rizzo, B. De Cooman, D. Matlock and J. Speer, Materials Science and Engineering: A, 2006, vol. 438, pp. 25-34.

    Article  Google Scholar 

  9. 9. M. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W. Sloof and J. Sietsma, Acta Materialia, 2011, vol. 59, pp. 6059-6068.

    Article  CAS  Google Scholar 

  10. 10. G. Avramovic-Cingara, Y. Ososkov, M. Jain and D. Wilkinson, Materials Science and Engineering: A, 2009, vol. 516, pp. 7-16.

    Article  Google Scholar 

  11. 11. S.-H. Joo, J.K. Lee, J.-M. Koo, S. Lee, D.-W. Suh and H.S. Kim, Scripta Materialia, 2013, vol. 68, pp. 245-248.

    Article  CAS  Google Scholar 

  12. 12. H. Ghassemi-Armaki, R. Maaß, S. Bhat, S. Sriram, J. Greer and K. Kumar, Acta Materialia, 2014, vol. 62, pp. 197-211.

    Article  CAS  Google Scholar 

  13. J. Samei, D.E. Green, J. Cheng and M.S. de CarvalhoLima, Mater. Des., 2016, vol. 92, pp. 1028-1037.

    Article  CAS  Google Scholar 

  14. 14. J. Samei, L. Zhou, J. Kang and D.S. Wilkinson, International Journal of Plasticity, 2019, vol. 117, pp. 58-70.

    Article  CAS  Google Scholar 

  15. 15. M. Santofimia, L. Zhao and J. Sietsma, Scripta Materialia, 2008, vol. 59, pp. 159-162.

    Article  CAS  Google Scholar 

  16. 16. M. Santofimia, L. Zhao and J. Sietsma, Metallurgical and Materials Transactions A, 2009, vol. 40, p. 46.

    Article  Google Scholar 

  17. 17. Y. Toji, G. Miyamoto and D. Raabe, Acta Materialia, 2015, vol. 86, pp. 137-147.

    Article  CAS  Google Scholar 

  18. 18. I. de Diego-Calderón, D. De Knijf, M. Monclús, J. Molina-Aldareguia, I. Sabirov, C. Föjer and R. Petrov, Materials Science and Engineering: A, 2015, vol. 630, pp. 27-35.

    Article  Google Scholar 

  19. 19. I. de Diego-Calderón, I. Sabirov, J. Molina-Aldareguia, C. Föjer, R. Thiessen and R. Petrov, Materials Science and Engineering: A, 2016, vol. 657, pp. 136-146.

    Article  Google Scholar 

  20. 20. J. Kang, M. Jain, D. Wilkinson and J. Embury, The Journal of Strain Analysis for Engineering Design, 2005, vol. 40, pp. 559-570.

    Article  Google Scholar 

  21. 21. J. Kang, Y. Ososkov, J.D. Embury and D.S. Wilkinson, Scripta Materialia, 2007, vol. 56, pp. 999-1002.

    Article  CAS  Google Scholar 

  22. 22. A. Devaraj, Z. Xu, F. Abu-Farha, X. Sun and L.G. Hector, JOM, 2018, vol. 70, pp. 1752-1757.

    Article  CAS  Google Scholar 

  23. S. Li, D. Zou, C. Xia and J. He, Steel Res. Intl., 2016, vol. 87, pp. 1302-1311.

    Article  CAS  Google Scholar 

  24. 24. J. Min, L.G. Hector Jr, L. Zhang, J. Lin, J.E. Carsley and L. Sun, Materials Science and Engineering: A, 2016, vol. 673, pp. 423-429.

    Article  CAS  Google Scholar 

  25. 25. F. Abu-Farha, X. Hu, X. Sun, Y. Ren, L.G. Hector, G. Thomas and T.W. Brown, Metallurgical and Materials Transactions A, 2018, vol. 49, pp. 2583-2596.

    Article  CAS  Google Scholar 

  26. V. Savic and L.G. Hector Jr, SAE Trans., 2007, pp. 218–228.

  27. W. Poling, V. Savic, L. Hector, A. Sachdev, X. Hu, A. Devaraj and F. Abu-Farha, Report No. 0148-7191, SAE Technical Paper 2016.

  28. 28. M. Mazinani and W. Poole, Metallurgical and materials transactions A, 2007, vol. 38, pp. 328-339.

    Article  Google Scholar 

  29. 29. J. Hidalgo, K. Findley and M. Santofimia, Materials Science and Engineering: A, 2017, vol. 690, pp. 337-347.

    Article  CAS  Google Scholar 

  30. 30. R. Blondé, E. Jimenez-Melero, L. Zhao, J. Wright, E. Brück, S. Van der Zwaag and N. Van Dijk, Materials Science and Engineering: A, 2014, vol. 618, pp. 280-287.

    Article  Google Scholar 

  31. 31. X. Xiong, B. Chen, M. Huang, J. Wang and L. Wang, Scripta Materialia, 2013, vol. 68, pp. 321-324.

    Article  CAS  Google Scholar 

  32. 32. Q. Han, Y. Kang, P.D. Hodgson and N. Stanford, Scripta Materialia, 2013, vol. 69, pp. 13-16.

    Article  CAS  Google Scholar 

  33. 33. J. Marteau, H. Haddadi and S. Bouvier, Experimental Mechanics, 2013, vol. 53, pp. 427-439.

    Article  CAS  Google Scholar 

  34. 34. M. Kapp, T. Hebesberger and O. Kolednik, International Journal of Materials Research, 2011, vol. 102, pp. 687-691.

    Article  CAS  Google Scholar 

  35. 35. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge and M. Koyama, Annual Review of Materials Research, 2015, vol. 45, pp. 391-431.

    Article  CAS  Google Scholar 

  36. 36. C.C. Tasan, J.P. Hoefnagels, M. Diehl, D. Yan, F. Roters and D. Raabe, International Journal of Plasticity, 2014, vol. 63, pp. 198-210.

    Article  CAS  Google Scholar 

  37. 37. Q. Furnémont, M. Kempf, P. Jacques, M. Göken and F. Delannay, Materials Science and Engineering: A, 2002, vol. 328, pp. 26-32.

    Article  Google Scholar 

  38. 38. H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, S. Matsuoka and Y. Tanaka, Journal of alloys and compounds, 2013, vol. 577, pp. S661-S667.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The materials used in this study were provided by General Motors R&D Centre, Warren, MI. Partial funding was provided by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Wilkinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehiyan, D., Samei, J., Amirkhiz, B.S. et al. Microstructural Evolution During Deformation of a QP980 Steel. Metall Mater Trans A 51, 4524–4539 (2020). https://doi.org/10.1007/s11661-020-05882-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05882-2

Navigation