Skip to main content

Advertisement

Log in

Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Asymmetric warming has been increasingly discussed recently, yet knowledge of this difference in warming between daytime and nighttime is still limited. Most studies of how climate warming influences the terrestrial ecosystem often ignore this asymmetric effect. We investigated the change in temperature between daytime and nighttime and analyzed the relationships between normalized difference vegetation index and the temperature in the daytime (Tmax) and the nighttime (Tmin) from 1982 to 2015 in temperate China. Results showed a faster increase in Tmin (0.46 °C dec−1, p < 0.01) during the nighttime than in Tmax (0.42 °C dec−1, p < 0.01) during the daytime, which indicated an asymmetric warming rate. The asymmetric warming during the daytime and nighttime was closely related to variations in precipitation and solar radiation. The increasing Tmin and Tmax were most pronounced over a large portion of the entire temperate China, and their warming trends displayed a non-uniform spatial distribution. The area with daytime warming was larger than that with nighttime warming, approximately accounting for 99.53% and 96.22% of temperate China, respectively. The area with warming enhancing vegetation greenness was larger during the day (71.16% of temperate China, p < 0.05) than at night (61.60% of temperate China, p < 0.05), and vice versa, which presented asymmetric warming effects on China’s temperate vegetation. We also found clear differences in the responses of the normalized difference vegetation index among different vegetation biomes to this asymmetric warming. Averagely, Tmax was significantly related to the NDVI of shrub, desert, broadleaf forest, needleleaf forest, and swamp (p < 0.01). However, this similar relationship appeared only between Tmin and desert vegetation (p < 0.01). Our findings emphasized the crucial role of asymmetric warming between the daytime maxima and nighttime minima in climate change research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

The authors are grateful for the comments from the editor and anonymous reviewers.

Funding

The work was financially supported by the National Natural Science Foundation of China (U1810101, 41161066, and 41871193), and the Important Specialized Science and Technology Item of the Shanxi Province (Grant no.20121101011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Du.

Additional information

Responsible editor: Hailong Wang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Zhao, J., Liu, X. et al. Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China. Environ Sci Pollut Res 26, 35717–35727 (2019). https://doi.org/10.1007/s11356-019-06440-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06440-z

Keywords

Navigation