Skip to main content

Advertisement

Log in

Mechanical Testing of Polymers in Pressurized Hydrogen: Tension, Creep and Ductile Fracture

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The paper aims at characterizing some key features of the mechanical behavior of two semi-crystalline polymers in weakly pressurized hydrogen. The opportunity to use hydrogen as an alternative energy strengthens the need for reliable data on possible coupling effects between gas diffusion and mechanical properties, especially for safe design purpose. However, such effects have not been really quantified in polymers. In the present study, a hydraulic testing machine has been fitted with a pressure hydrogen chamber, and three major aspects of the mechanical behavior have been investigated in polyethylene and polyamide 11: monotonic tension, long-term creep (based on a time-temperature superposition principle) and ductile fracture (evaluated from an essential work of fracture method). Suitable protocols have been defined to take into account specificity like temperature and pressure history dependence and gas saturation kinetics of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ishisaka A, Kawagoe M (2004) Examination of the time-water content superposition on the dynamic viscoelasticity of moistened polyamide 6 and epoxy. J Appl Polym Sci 93:560–567

    Article  Google Scholar 

  2. Weibin G, Shimin H, Minjiao Y, Long J, Yi D (2009) The effects of hydrothermal ageing on properties and structure of bisphenol A polycarbonate. Polym Degrad Stab 94(1):13–17

    Article  Google Scholar 

  3. Qian R, Lu X, Brown N (1993) The effect of concentration of an environmental stress cracking agent on slow crack growth in polyethylenes. Polymer 34(22):4727–4731

    Article  Google Scholar 

  4. Mueller W, Jakob I (2003) Oxidative resistance of high-density polyethylene geomembranes. Polym Degrad Stab 79(1):161–172

    Article  Google Scholar 

  5. Naito Y, Mizoguchi K, Terada K, Kamiya Y (1991) The effect of pressure on gas permeation through semicrystalline polymers above the glass transition temperature. J Polym Sci B Polym Phys 29(4):457–462

    Article  Google Scholar 

  6. Stodilka DO, Kherani NP, Shmayda WT, Thorpe SJ (2000) A tritium tracer technique for the measurement of hydrogen permeation in polymeric materials. Int J Hydrogen Energy 25:1129–1136

    Article  Google Scholar 

  7. Villaluenga JPG, Khayet M, Lopez-Manchado MA, Valentin JL, Seoane B, Mengual JI (2007) Gas transport properties of polypropylene/clay composite membranes. Eur Polym J 43:1132–1143

    Article  Google Scholar 

  8. Monson L, Moon SI, Extrand CW (2009) Gas permeation resistance of various grades of perfluoroalkoxy-polytetrafluoroethylene copolymers. J Appl Polym Sci 111(1):141–147

    Article  Google Scholar 

  9. Paterson MS (1967) Effect of pressure on stress–strain properties of materials. Geophys J R Astron Soc 14:13–17

    Article  Google Scholar 

  10. Balzer M, Sehitoglu H (1997) A new apparatus for studying mechanical behavior under pressure. Exp Mech 37(1):87–95

    Article  Google Scholar 

  11. Forquin P, Arias A, Zaera R (2009) Relationship between mesostructure. Mechanical behavior and damage of cement composites under high-pressure confinement. Exp Mech 49:613–625

    Article  Google Scholar 

  12. Rabinowitz S, Ward IM, Parry JSC (1970) The effect of hydrostatic pressure on the shear yield behaviour of polymers. J Mater Sci 5:29–39

    Article  Google Scholar 

  13. Bardia P, Narasimhan R (2006) Characterization of pressure sensitive yielding in polymers. Strain 42:187–196

    Article  Google Scholar 

  14. Rittel D, Brill A (2008) Dynamic flow and failure fo confined polymethylmethacrylate. J Mech Phys Solids 56:1401–1416

    Article  Google Scholar 

  15. Paterson MS (1964) J Appl Phys 35(1):176–179

    Article  MathSciNet  Google Scholar 

  16. Murakami Y (2006) The effect of hydrogen on fatigue properties of metals used for fuel cell system. Int J Fract 138:167–195

    Article  MATH  Google Scholar 

  17. Gent AN, Tompkins DA (1969) Nucleation and growth of gas bubbles in elastomers. J Appl Phys 40:2520

    Article  Google Scholar 

  18. Yamabe J, Nishimura S (2009) Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas. Int J Hydrogen Energy 34(4):1977–1989

    Article  Google Scholar 

  19. Briscoe BJ, Lorge O, Dang P (2002) Hardnesses of poly(vinylidene) fluoride and polyamide in high-pressure gas ambience. Phil Mag A 82(10):2081–2091

    Article  Google Scholar 

  20. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, p 607

  21. Cotterell B, Reddel JK (1977) The essential work of plane stress ductile fracture. Int J Fract 13:267–277

    Google Scholar 

  22. Mai YW, Cotterell B (1986) On the essential work of ductile fracture in polymers. Int J Fract 32:105–125

    Article  Google Scholar 

  23. Bureau MN, Perrin Sarazin F, Ton-That TM (2004) Polyolefin nanocomposites essential work of fracture analysis. Polym Eng Sci 44(6):1142–1151

    Article  Google Scholar 

  24. Saminathan K, Selvakumar P, Bhatnagar N (2008) Fracture studies of polypropylene/nanoclay composite. Part I: Effect of loading rates on essential work of fracture. Polym Test 27:296–307

    Article  Google Scholar 

  25. Carrillo-Sánchez F, Canche-Escamilla G, Herrera-Franco PJ (2010) A study of the fracture toughness of acrylic composites using the essential work of fracture method. Polym Test 29:565–571

    Article  Google Scholar 

  26. Kwon HJ, Jar PYB (2007) New partitioning approach to the measurement of plane-strain fracture toughness of high-density polyethylene based on the concept of essential work of fracture. Eng Fract Mech 74:2471–2480

    Article  Google Scholar 

  27. Yamakawa RS, Razzino CA, Correa CA, Hage E Jr (2004) Influence of notching and molding conditions on determination of EWF parameters in polyamide 6. Polym Test 23:195–202

    Article  Google Scholar 

  28. Pegoretti A, Ricco T (2006) On the essential work of fracture of neat and rubber toughened polyamide-66. Eng Fract Mech 73:2486–2502

    Article  Google Scholar 

  29. Clutton E (2001) Fracture mechanics testing methods for polymers, adhesives and composites. In: Moore DR, Pavan A, Williams JG (eds) ESIS 28. Elsevier Science, Oxford, pp 177–195

    Google Scholar 

  30. Klopffer MH, Flaconneche B, Odru P (2007) Transport properties of gas mixtures through polyethylene. Plast, Rubber Compos 36(5):184–189

    Article  Google Scholar 

  31. Flaconneche B, Martin J, Klopffer MH (2001) Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly(vinylidene fluoride). Oil Gas Sci Technol 56(3):261–278

    Article  Google Scholar 

  32. Crank J (1956) The mathematics of diffusion. Clarendon, Oxford

    MATH  Google Scholar 

  33. Hedenqvist M, Gedde UW (1996) Diffusion of small-molecule penetrants in semicrystalline polymers. Prog Polym Sci 21:299–333

    Article  Google Scholar 

  34. Mansfield M, Boyd RH (1978) Molecular motions, alpha-relaxation and chain transport in polyethylene crystals. J Polym Sci B Polym Phys 16(7):1227–1252

    Google Scholar 

  35. Nitta K, Tanaka A (2001) Dynamic mechanical properties of metallocene catalyzed linear polyethylenes. Polymer 42(3):1219–1226

    Article  Google Scholar 

  36. Pegoretti A, Castellani L, Franchini L, Mariani P, Penati A (2009) On the essential work of fracture of linear low-density-polyethylene. I. Precision of the testing method. Eng Fract Mech 76(18):2788–2798

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the French National Research Agency ANR (PAN’H program/PolHYTube project) for granting the work and fruitful partnerships with Air Liquide, Institut Français du Pétrole, IMP-INSA Lyon, Mateis-INSA Lyon, Arkema, and CEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Castagnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnet, S., Grandidier, JC., Comyn, M. et al. Mechanical Testing of Polymers in Pressurized Hydrogen: Tension, Creep and Ductile Fracture. Exp Mech 52, 229–239 (2012). https://doi.org/10.1007/s11340-011-9484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9484-1

Keywords

Navigation