Skip to main content
Log in

Ru–PPh3@porous organic polymer: efficient and stable catalyst for the trickle bed regioselective hydrogenation of cinnamaldehyde

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ru supported on the porous vinyl-functional triphenylphosphine organic polymer (Ru–PPh3@POP) as a heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde (CAL) was synthesized. This catalyst, which combines the advantages of heterogeneous and homogeneous catalyst, showed much higher catalytic activity of continuous trickle bed hydrogenation of CAL than traditional inorganic material supported heterogeneous catalysts. The high efficiency of the Ru–PPh3@POP catalyst was attributed to the formation of the strong coordination bonds between the Ru species and the exposure phosphorus atoms on the surface of PPh3@POP support according to the results of EDS-mapping, 31P NMR, XPS analysis and HRTEM. Importantly, Ru species maintained their nanoparticles without further aggregation during the long-term reaction, and thus the catalyst exhibited a high conversion of CAL of 55% and selectivity towards cinnamyl alcohol (COL) of 63% even over 312 h of time on stream of hydrogenation of CAL. The ICP results of the reaction solution revealed that there was no Ru leaching from the PPh3@POP support during the continuous reaction process. This excellent catalytic activity and stability make it very attractive. Our approaches provide a methodology to expand the heterogenized homogeneous catalysts widely spread in exploitation in fine chemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toebes ML, Prinsloo FF, Bitter JH, van Dillen AJ, de Jong KP (2003) J Catal 214(1):78–87

    Article  CAS  Google Scholar 

  2. Shirai M, Tanaka T, Arai M (2001) J Mol Catal A Chem 168(1):99–103

    Article  CAS  Google Scholar 

  3. Nuithitikul K, Winterbottom M (2004) Chem Eng Sci 59(22):5439–5447

    Article  CAS  Google Scholar 

  4. Gallezot P, Richard D (1998) Catal Rev 40(1–2):81–126

    Article  CAS  Google Scholar 

  5. Coq B, Figueras F (1998) Coord Chem Rev 178:1753–1783

    Article  Google Scholar 

  6. Fujita SI, Sano Y, Bhanage BM, Arai M (2004) J Catal 225(1):95–104

    Article  CAS  Google Scholar 

  7. Dongil AB, Bachiller-Baeza B, Guerrero-Ruiz A, Rodríguez-Ramos I (2011) J Catal 282(2):299–309

    Article  CAS  Google Scholar 

  8. Hajek J, Kumar N, Maki-Arvela P, Salmi T, Murzin DY (2004) J Mol Catal A Chem 217(1–2):145–154

    Article  CAS  Google Scholar 

  9. Rossin A, Kovacs G, Ujaque G, Lledos A, Joo F (2006) Organometallics 25(21):5010–5023

    Article  CAS  Google Scholar 

  10. Hajek J, Kumar N, Maki-Arvela P, Salmi T, Murzin DY, Paseka I, Heikkila T, Laine E, Laukkanen P, Vayrynen J (2003) Appl Catal A Gen 251(2):385–396

    Article  CAS  Google Scholar 

  11. Zhao FY, Ikushima Y, Chatterjee M, Sato O, Arai M (2003) J Supercrit Fluids 27(1):65–72

    Article  CAS  Google Scholar 

  12. Vu H, Goncalves F, Philippe R, Lamouroux E, Corrias M, Kihn Y, Plee D, Kalck P, Serp P (2006) J Catal 240(1):18–22

    Article  CAS  Google Scholar 

  13. Pak A, Vozdvizhenskii V, Turganbaeva S, Levintova T, Konuspaev S (1983) React Kinet Catal Lett 23(1–2):1–5

    Article  CAS  Google Scholar 

  14. Ferhat Z, Derouault A, Barrault J, Bettahar M (2002) React Kinet Catal Lett 76(2):249–258

    Article  CAS  Google Scholar 

  15. Espro C, Donato A, Galvagno S, Neri G (2016) Reac Kinet Mech Cat 118(1):223–233

    Article  CAS  Google Scholar 

  16. Hao C, Guo X, Pan Y, Chen S, Jiao Z, Yang H, Guo X (2016) J Am Chem Sci 138:9361–9364

    Article  Google Scholar 

  17. Wu B, Huang H, Yang J, Zheng N, Fu G (2012) Angew Chem Int Ed 124:3496–3499

    Article  Google Scholar 

  18. Krishna KR, Bell AT (1993) J Catal 139(1):104–118

    Article  CAS  Google Scholar 

  19. Ghosh A, Kumar R (2005) Microporous Mesoporous Mat 87:33–44

    Article  CAS  Google Scholar 

  20. Tian Z, Li Q, Hou J, Li Y, Ai S (2016) Catal Sci Technol 6:703–707

    Article  CAS  Google Scholar 

  21. Bhanage B (1999) Chem Commun 14(14):1277–1278

    Article  Google Scholar 

  22. Fujita S-i, Akihara S, Arai M (2006) J Mol Catal A Chem 249(1):223–229

    Article  CAS  Google Scholar 

  23. Hernandez M, Kalck P (1997) J Mol Catal A Chem 116(1):131–146

    Article  CAS  Google Scholar 

  24. Grosselin JM, Mercier C, Allmang G, Grass F (1991) Organometallics 10(7):2126–2133

    Article  CAS  Google Scholar 

  25. Fujita S, Akihara S, Zhao FY, Liu RX, Hasegawa M, Arai M (2005) J Catal 236(1):101–111

    Article  CAS  Google Scholar 

  26. Grosselin JM, Mercier C (1990) J Mol Catal 63(3):L25–L27

    Article  CAS  Google Scholar 

  27. Cole-Hamilton DJ (2003) Science 299(5613):1702–1706

    Article  CAS  Google Scholar 

  28. Robinson AL (1976) Science 194(4271):1261–1263

    Article  CAS  Google Scholar 

  29. McKeown NB, Budd PM (2006) Chem Soc Rev 35(8):675–683

    Article  CAS  Google Scholar 

  30. Cornils B (1999) J Mol Catal A Chem 143(1):1–10

    Article  CAS  Google Scholar 

  31. Horváth IT, Rábai J (1994) Science 266(5182):72–75

    Article  Google Scholar 

  32. de Wolf E, van Koten G, Deelman B-J (1999) Chem Soc Rev 28(1):37–41

    Article  Google Scholar 

  33. Clark J, Macquarrie D (1998) Chem Commun 8(8):853–860

    Article  Google Scholar 

  34. Song C, S-g Lee (2002) Chem Rev 102:3495

    Article  CAS  Google Scholar 

  35. de Miguel YR (2000) J Chem Soc Perkin Trans 1(24):4213–4221

    Article  Google Scholar 

  36. Kaur P, Hupp JT, Nguyen ST (2011) ACS Catal 1(7):819–835

    Article  CAS  Google Scholar 

  37. Trewin A, Cooper AI (2010) Angew Chem Int Ed 49(9):1533–1535

    Article  CAS  Google Scholar 

  38. Dhanalaxmi K, Singuru R, Kundu SK, Reddy BM, Bhaumik A, Mondal J (2016) Rsc Adv 6(43):36728–36735

    Article  CAS  Google Scholar 

  39. Sun Q, Dai Z, Meng X, Xiao F-S (2015) Chem Soc Rev 44(17):6018–6034

    Article  CAS  Google Scholar 

  40. Iwai T, Harada T, Hara K, Sawamura M (2013) Angew Chem Int Ed 52(47):12322–12326

    Article  CAS  Google Scholar 

  41. Sun Q, Jiang M, Shen Z, Jin Y, Pan S, Wang L, Meng X, Chen W, Ding Y, Li J, Xiao F-S (2014) Chem Commun 50(80):11844–11847

    Article  CAS  Google Scholar 

  42. Jiang M, Yan L, Sun X, Lin R, Song X, Jiang Z, Ding Y (2015) Reac Kinet Mech Cat 116(1):223–234

    Article  CAS  Google Scholar 

  43. Pham-Huu C, Keller N, Ehret G, Charbonniere LJ, Ziessel R, Ledoux MJ (2001) J Mol Catal A Chem 170(1):155–163

    Article  CAS  Google Scholar 

  44. Sullivan BP, Calvert JM, Meyer TJ (1980) Inorg Chem 19(5):1404–1407

    Article  CAS  Google Scholar 

  45. Phillips DC, Sawhill SJ, Self R, Bussell ME (2002) J Catal 207(2):266–273

    Article  CAS  Google Scholar 

  46. Mahmoud S, Hammoudeh A, Gharaibeh S, Melshemer J (2002) J Mol Catal A Chem 178:161–167

    Article  CAS  Google Scholar 

  47. Hammoudeh A, Mahmoud S (2003) J Mol Catal A Chem 203:231–239

    Article  CAS  Google Scholar 

  48. Plomp AJ, Vuori H, Krause AOI, de Jong KP, Bitter JH (2008) Appl Catal A Gen 351(1):9–15

    Article  CAS  Google Scholar 

  49. Giroir-Fendler A, Richard D, Gallezot P (1990) Catal Lett 5:175–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial support by the strategic priority program of the Chinese Academy of Science Grant No. XDB 17020400. We thank Mr. Xianchun Liu for useful discussions. We are also grateful for Mr. Jike Jiang, Mr. Yimin Li and Miss. Huimin Gong for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjie Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhu, H., Song, X. et al. Ru–PPh3@porous organic polymer: efficient and stable catalyst for the trickle bed regioselective hydrogenation of cinnamaldehyde. Reac Kinet Mech Cat 120, 637–649 (2017). https://doi.org/10.1007/s11144-016-1130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1130-6

Keywords

Navigation