Skip to main content
Log in

Some exceptional sets of Borel–Bernstein theorem in continued fractions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \([a_1(x),a_2(x), a_3(x),\ldots ]\) denote the continued fraction expansion of a real number \(x \in [0,1)\). This paper is concerned with certain exceptional sets of the Borel–Bernstein Theorem on the growth rate of \(\{a_n(x)\}_{n\geqslant 1}\). As a main result, the Hausdorff dimension of the set

$$\begin{aligned} E_{\sup }(\psi )=\left\{ x\in [0,1):\ \limsup \limits _{n\rightarrow \infty }\frac{\log a_n(x)}{\psi (n)}=1\right\} \end{aligned}$$

is determined, where \(\psi :{\mathbb {N}}\rightarrow {\mathbb {R}}^+\) tends to infinity as \(n\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, F.: Über eine Anwendung der Mengenlehre auf ein der Theorie der säkularen Störungen herrührendes Problem. Math. Ann. 71, 417–439 (1912)

    Article  Google Scholar 

  2. Borel, E.: Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27, 247–271 (1909)

    Article  Google Scholar 

  3. Borel, E.: Sur un probléme de probabilités relatif aux fractions continues. Math. Ann. 72, 578–584 (1912)

    Article  MathSciNet  Google Scholar 

  4. Cao, C.-Y., Wang, B.-W., Wu, J.: The growth rate of digits in infinite iterated function systems. Stud. Math. 217, 139–158 (2013)

    Article  Google Scholar 

  5. Cusick, T.-W.: Hausdorff dimension of sets of continued fractions. Q. J. Math. Oxford (2) 41, 277–286 (1990)

    Article  MathSciNet  Google Scholar 

  6. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  7. Fan, A.-H., Liao, L.-M., Wang, B.-W., Wu, J.: On Khintchine exponents and Lyapunov exponents of continued fractions. Ergod. Theory Dynam. Syst. 29, 73–109 (2009)

    Article  MathSciNet  Google Scholar 

  8. Fan, A.-H., Liao, L.-M., Wang, B.-W., Wu, J.: On the fast Khintchine spectrum in continued fractions. Monatsh. Math. 171, 329–340 (2013)

    Article  MathSciNet  Google Scholar 

  9. Fang, L.-L., Song, K.-K.: A remark on the extreme theory for continued fractions. arXiv:1608.04326

  10. Fang, L.-L., Song, K.-K.: Multifractal analysis of the convergence exponent in continued fractions, arXiv:1911.01821

  11. Good, I.-J.: The fractional dimensional theory of continued fractions. Math. Proc. Camb. Philos. Soc. 37, 199–228 (1941)

    Article  MathSciNet  Google Scholar 

  12. Hirst, K.: Continued fractions with sequences of partial quotients. Proc. Am. Math. Soc. 38, 221–227 (1973)

    Article  MathSciNet  Google Scholar 

  13. Iosifescu, M., Kraaikamp, C.: Metrical Theory of Continued Fractions. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  14. Jarník, V.: Zur metrischen Theorie der diopahantischen Approximationen. Proc. Mat. Fyz. 36, 91–106 (1928)

    Google Scholar 

  15. Jordan, T., Rams, M.: Increasing digit subsystems of infinite iterated function systems. Proc. Am. Math. Soc. 140, 1267–1279 (2012)

    Article  MathSciNet  Google Scholar 

  16. Khinchin, A.Ya.: Continued Fractions. The University of Chicago Press, Chicago (1964)

    MATH  Google Scholar 

  17. Liao, L.-M., Rams, M.: Upper and lower fast Khintchine spectra in continued fractions. Monatsh. Math. 180, 65–81 (2016)

    Article  MathSciNet  Google Scholar 

  18. Liao, L.-M., Rams, M.: Subexponentially increasing sums of partial quotients in continued fraction expansions. Math. Proc. Camb. Philos. Soc. 160(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  19. Łuczak, T.: On the fractional dimension of sets of continued fractions. Mathematika 44, 50–53 (1997)

    Article  MathSciNet  Google Scholar 

  20. Ramharter, G.: Eine Bemerkung über gewisse Nullmengen von Kettenbrüchen. Ann. Univ. Sci. Bp. Eötvös Sect. Math. 28, 11–15 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Wang, B.-W., Wu, J.: A problem of Hirst on continued fractions with sequences of partial quotients. Bull. Lond. Math. Soc. 40, 18–22 (2008)

    Article  MathSciNet  Google Scholar 

  22. Wang, B.-W., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math. 218, 1319–1339 (2008)

    Article  MathSciNet  Google Scholar 

  23. Wu, J.: A remark on the growth of the denominators of convergents. Monatsh. Math. 147(3), 259–264 (2006)

    Article  MathSciNet  Google Scholar 

  24. Wu, J., Xu, J.: The distribution of the largest digit in continued fraction expansions. Math. Proc. Camb. Philos. Soc. 146(1), 207–212 (2009)

    Article  MathSciNet  Google Scholar 

  25. Xu, J.: On sums of partial quotients in continued fraction expansions. Nonlinearity 21(9), 2113–2120 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Lingmin Liao for his valuable comments. We also sincerely thank the referees for their helpful suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunkun Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by National Natural Science Foundation of China (11771153, 11801591, 11971195) and Science and Technology Program of Guangzhou (202002030369). Kunkun Song would like to thank China Scholarship Council (CSC) for financial support (201806270091)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Ma, J. & Song, K. Some exceptional sets of Borel–Bernstein theorem in continued fractions. Ramanujan J 56, 891–909 (2021). https://doi.org/10.1007/s11139-020-00320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00320-8

Keywords

Mathematics Subject Classification

Navigation