Skip to main content

Advertisement

Log in

Ectomycorrhizal utilization of different phosphorus sources in a glacier forefront in the Italian Alps

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

In deglaciated surfaces, lithology influences habitat development. In particular, serpentinite inhibits soil evolution and plant colonization because of insufficient phosphorus (P) content, among other stressful properties. In nutrient-poor environments, ectomycorrhizal fungi (EMF) play a key role exploring the soil for P beyond the rhizosphere. In this study, we followed the role of EMF in accessing inorganic and organic P along two proglacial soil chronosequences in the Alps (NW Italy), respectively characterized by pure serpentinite till and serpentinite mixed with 10% of gneiss, and colonized by European Larch.

Methods

The access to inorganic and organic P forms by EMF was studied using specific mesh-bags for fungal hyphae entry, filled with quartz sand and inorganic phosphate (Pi) or myo-inositolhexaphosphate (InsP6) adsorbed onto goethite. They were incubated over 13 months at the organic/mineral horizon interface. After harvesting, EMF colonization via ergosterol analysis and the amount of P and Fe removed from mesh bags were measured.

Results

Ergosterol increased along the two chronosequences with slightly greater values on serpentinite and in Pi-containing bags. Up to 65% of Pi was removed from mesh-bags, only partly accompanied by a parallel release of Fe. The amount of InsP6 released was instead less than 45% and mostly removed with goethite.

Conclusions

The results suggest that, in extremely P-poor environments, EMF are able to release both inorganic and organic P forms from highly stabilized associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EMF:

ectomycorrhizal fungi

InsP6:

myoinositol hexaphosphate

S sites:

serpentinite sites

SG sites:

serpentinite sites with 10% gneiss

References

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2012) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22(7):535–544

    CAS  PubMed  Google Scholar 

  • Almeida JP (2019) Biomass, community structure and phosphorus uptake of ectomycorrhizal fungi in response to phosphorus limitation and nitrogen deposition. Lund University, Doctoral thesis. Department of Biology

    Google Scholar 

  • Barton AM, Wallenstein MD (1997) Effects of invasion of Pinus virginiana on soil properties in serpentine barrens in southeastern Pennsylvania. J Torrey Bot Soc 124(4):297–305

    Google Scholar 

  • Bernasconi SM, Bauder A, Bourdon A, Brunner I, Bünemann E, Christl I, Derungs N, Edwards P, Farinotti D, Frey B, Frossard E, Furrer G, Gierga M, Göransson H, Gülland K, Hagedorn F, Hajdas I, Hindshaw R, Ivy-Ochs S, Jansa J, Kiczka M, Kretschmar R, Lemarchand E, Luster J, Magnusson J, Mitchell EAD, Venterink HO, Plötze M, Reynolds B, Smittenberg RH, Stähli M, Tamburini F, Tipper ET, Wacker L, Welc M, Wiederhold JG, Zeyer J, Zimmermann S, Zumsteg A (2011) Chemical and biological gradients along the Damma glacier soil chronosequence, Switzerland. Vadose Zone J 10:867–883

    CAS  Google Scholar 

  • Berner C, Johansson T, Wallander H (2012) Long-term effect of apatite on ectomycorrhizal growth and community structure. Mycorrhiza 22:615–621

    CAS  PubMed  Google Scholar 

  • Bonifacio E, Falsone G, Catoni M (2013) Influence of serpentine abundance on the vertical distribution of the available elements in soil. Plant Soil 368:493–506

    CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides, Oregon

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    CAS  PubMed  Google Scholar 

  • Burga CA, Krüsi B, Egli M, Wernli M, Elsener S, Ziefle M, Fischer T, Mavris C (2010) Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora 205:561–576

    Google Scholar 

  • Cairney JW (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344:51–71

    CAS  Google Scholar 

  • Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163(1):177–185

    Google Scholar 

  • Celi L, Lamacchia S, Ajmone-Marsan F, Barberis E (1999) Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena. Soil Sci 164(8):574–585

    CAS  Google Scholar 

  • Celi L, Presta M, Ajmone-Marsan F, Barberis E (2001) Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite. Soil Sci Soc Am J 65(3):753–760

    CAS  Google Scholar 

  • Celi L, De Luca G, Barberis E (2003) Effects of interaction of organic and inorganic P with ferrihydrite and kaolinite-iron oxide systems on iron release. Soil Sci 168(7):479–488

    CAS  Google Scholar 

  • Celi L, Cerli C, Turner BL, Santoni S, Bonifacio E (2013) Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia. Plant Soil 367:121–134

    CAS  Google Scholar 

  • Cerli C, Celi L, Johansson MB, Kögel-Knabner I, Rosenqvist L, Zanini E (2006) Soil organic matter changes in a spruce chronosequence on Swedish former agricultural soil I. Carbon and lignin dynamics. Soil Sci 171:837–849

    CAS  Google Scholar 

  • Colpaert JV, Van Laere A, Van Tichelen KK, Van Assche JA (1997) The use of inositol hexaphosphate as a phosphorus source by mycorrhizal and non-mycorrhizal scots pine (Pinus sylvestris). Funct Ecol 11:407–415

    Google Scholar 

  • Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    CAS  Google Scholar 

  • Crews TE, Kitayama L, Fownes JH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–1424

    Google Scholar 

  • D’Amico ME, Bonifacio E, Zanini E (2014) Relationships between serpentine soils and vegetation in a xeric inner-Alpine environment. Plant Soil 376:111–128

    Google Scholar 

  • D’Amico ME, Freppaz M, Leonelli G, Bonifacio E, Zanini E (2015) Early stages of soil development on serpentinite: the proglacial area of the Verra Grande glacier, Western Italian Alps. J Soils Sediments 15:1292–1310

    Google Scholar 

  • D’Amico ME, Freppaz M, Zanini E, Bonifacio E (2017) Primary vegetation succession and the serpentinite syndrome: the proglacial area of the Verra Grande glacier, North-Western Italian Alps. Plant Soil 415:283–298

    Google Scholar 

  • Darch T, Blackwell MSA, Hawkins JMB, Haygarth PM, Chadwick D (2014) A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: implications for water quality. Critical Rev Env Sci Techn 44(19):2172–2202

    CAS  Google Scholar 

  • Fang Z, Shao C, Meng Y, Wua P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    CAS  Google Scholar 

  • George TS, Simpson RJ, Gregory PJ, Richardson AE (2007) Differential interaction of Aspergillus Niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39(3):793–803

    CAS  Google Scholar 

  • George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS, Bol R, Cabugao KG, Celi L, Cotner JB, Feng G, Goll DS, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson AE, Tamburini F, Shand CA, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Mezeli MM, Almås ÅR, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley CA, Bruulsema TW, Ciais P, Cozzolino V, Duran PC, Mora ML, de Menezes AB, Dodd RJ, Dunfield K, Engl C, Frazão JJ, Garland G, González Jiménez JL, Graca J, Granger SJ, Harrison AF, Heuck C, Hou EQ, Johnes PJ, Kaiser K, Kjær HA, Klumpp E, Lamb AL, Macintosh KA, Mackay EB, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón CP, Nelson LA, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith AC, Smits MM, Sobarzo JA, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth PM (2018) Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil 427:191–208

    CAS  Google Scholar 

  • Giaveno C, Celi L, Richardson AE, Simpson RJ, Barberis E (2010) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol Biochem 42(3):491–498

    CAS  Google Scholar 

  • Hagenbo A, Kyaschenko J, Clemmensen KE, Lindahl BD, Fransson P (2018) Fungal community shifts underpin declining mycelial production and turnover across a Pinus sylvestris chronosequence. J Ecol 106:490–501

    CAS  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Expl Bot 59:93–109

    CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in apatite amended and non-amended mesh bags buried in a phosphorus-poor spruce forest. Mycol Res 112(6):681–688

    CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    PubMed  Google Scholar 

  • IUSS Working Group WRB (2015) World reference base for soil resources 2015, world soil resources reports, no 103. FAO, Rome

    Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbiosis in phosphorus cycling. In: Bünemann et al. (Eds.) Phosphorus in action, Springer-Verlag, 137-168

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53(1):51–77

    Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizzas always mutualism? Can J Bot 82(8):1089–1109

    Google Scholar 

  • Kałucka IL, Jagodziński AM (2017) Ectomycorrhizal Fungi: a major player in early succession. In: Varma A et al (eds) Mycorrhiza - function. Diversity, State of the Art, pp 187–229

    Google Scholar 

  • Koele N, Dickie IA, Blum JD, Gleason JD, de Graaf L (2014) Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biol Biochem 69:63–70

    CAS  Google Scholar 

  • Krumina L (2017) Adsorption, desorption, and redox reactions at iron oxide nanoparticle surfaces. Lund: Lund University, Faculty of Science, Centre for Environmental and Climate Research (CEC), Department of Biology

  • Landerweert R, Hoffland E, Finlay RD, Kuyper TW, Van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecol Evol 16:248–254

    Google Scholar 

  • Louche J, Ali MA, Cloutier-Hurteau B, Sauvage FX, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73(2):323–335

    CAS  PubMed  Google Scholar 

  • Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: Hammond JP (ed) White PJ. Springer, The ecophysiology of plant-phosphorus interactions, pp 83–116

    Google Scholar 

  • Magid J, Tiessen H, Condron LM (1996) Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier Science, Amsterdam, pp 429–466

    Google Scholar 

  • Martin M, Celi L, Barberis E (1999) Determination of low concentrations of organic phosphorus in soil solution. Commun Soil Sci Plant Anal 30(13–14):1909–1917

    CAS  Google Scholar 

  • Martin M, Celi L, Barberis E (2004) Desorption and plant availability of myo-inositol hexaphosphate adsorbed on goethite. Soil Sci 169(2):115–124

    CAS  Google Scholar 

  • Mercalli L (2003) Atlante climatico della Valle d’Aosta, Società Meteorologica Italiana (ed), Torino

  • Myers MD, Leake JR (1996) Phosphodiesters as mycorrhizal P sources. II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon. New Phytol 132(3):445–451

    CAS  PubMed  Google Scholar 

  • Ohno T, Zibilske LM (1991) Determination of low concentration of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895

    CAS  Google Scholar 

  • Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939, US Gov. Print. Office, Washington, D.C.

  • Parfitt RL (1979) The availability of P from phosphate-goethite bridging complexes. Desorption and uptake by ryegrass. Plant Soil 53:55–65

    CAS  Google Scholar 

  • Petra M, David C, Zed R (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biology and Biochemistry 43 (5):883–894

    CAS  Google Scholar 

  • Plassard C, Louche J, Ali MA, Duchemin M, Legname E, Cloutier-Hurteau B (2011) Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Ann For Sci 68:33–43

    Google Scholar 

  • Porder S, Ramachandran S (2013) The phosphorus concentration of common rocks – a potential driver of ecosystem P status. Plant Soil 367:41–55

    CAS  Google Scholar 

  • Potila H, Wallander H, Sarjala T (2009) Growth of ectomycorrhizal fungi in drained petland forests with variable P and K availability. Plant Soil 316(1–2):139–150

    CAS  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jorgensen SE, Fath B (eds) Enciclopedia of ecology, Vol, vol 2, pp 1201–1207

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? New Phytol 157:475–492

    Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349(1–2):121–156

    CAS  Google Scholar 

  • Ritter E, Vesterdal L, Gundersen P (2003) Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil 249:319–330

    CAS  Google Scholar 

  • Rosenstock NP, Berner C, Smits MM, Kram P, Wallander H (2016) The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests. New Phytol 211:542–553

    CAS  PubMed  Google Scholar 

  • Rosenstock N, Ellström M, Oddsdottir E, Sigurdsson BD, Wallander H (2019) Carbon sequestration and community composition of ectomycorrhizal fungi across a geothermal warming gradient in an Icelandic spruce forest. Fungal Ecol 40:32–42

    Google Scholar 

  • Rosling A (2009) Trees, Mycorrhiza and minerals –field relevance of in vitro experiments. Geomicrobiol J 26(6):389–401

    CAS  Google Scholar 

  • Rosling A, Rosenstock N (2008) Ectomycorrhizal fungi in mineral soil. Min Mag 72(1):127–130

    CAS  Google Scholar 

  • Schwertmann U, Cornell RM (1964) Goethite, in: Iron oxides in laboratory: preparation and characterization, Part 2. Wiley-VCH, 64-65

  • Shah F, Schwenk D, Nicolas C, Persson P, Hoffmeister D, Tunlid A (2015) Involutin is an Fe3+ reductant secreted by the ectomycorrhizal fungus Paxillus involutus during Fenton-based decomposition of organic matter. Appl Env Microbiol 81:8427–8433

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith SE, Anderson IC, Smith FA (2018) Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. In: Roberts JA (Ed) Annual Plant Reviews online. https://doi.org/10.1002/9781119312994.apr0529

  • Smits MM, Wallander H (2017) Role of mycorrhizal symbiosis in mineral weathering and nutrient mining from soil parent material, in: Mycorrhizal mediation of soil fertility, structure, and carbon storage, edited by Johnson, N. C., Gehring, C., and Jansa, J.: Elsevier, Amsterdam. 35-46. ISBN:978-0-12-8043127, 2017

    Google Scholar 

  • Stutter MI, Shand CA, George TS, Blackwell MSA, Dixon L, Bol R, MacKay RL, Richardson AE, Condron LM, Haygarth PM (2015) Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma 257-258:29–39

    CAS  Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients, in: Sparks et al. (Eds.) Methods of soil analysis, Part 3, Chemical Methods, pp 1201-1229

  • Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient parches of high resource quality. Ann Bot 89(6):783–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vergnano Gambi O, Gabbrielli R (1981) La composizione minerale della vegetazione degli affioramenti olofitici dell’alta Valle d’Ayas. Rev Valdôtaine Hist Nat 35:51–61

    Google Scholar 

  • Vergnano Gambi O, Pedani R, Gabbrielli R (1987) Ulteriori dati sulla composizione minerale della vegetazione degli affioramenti ofiolitici della Valle d’Ayas. Rev Valdôtaine Hist Nat 41:99–100

    Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151(3):753–760

    CAS  Google Scholar 

  • Wallander H, Johansson U, Sterkenburg E, Brandström Durling M, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187(4):1124–1134

    CAS  PubMed  Google Scholar 

  • Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian A, Björk RG, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Plassard C, Rudawska M (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhical mycelium in forest soils – a review. Soil Biol Biochem 57:1034–1047

    CAS  Google Scholar 

  • White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ Hammond JP (Eds.) the ecophysiology of plant-phosphorus interactions. Springer, pp 51-81

  • White PJ, Broadley MR, Greenwood DJ, Hammond JP (2005) Genetic modifications to improve phosphorus acquisition by roots. Proceedings 568, International Fertiliser Society, York

  • Yan Y, Li W, Yang J, Zheng A, Liu F, Feng X, Sparks DL (2014) Mechanism of myo-inositol hexakisphosphate sorption on amorphous aluminum hydroxide: spectroscopic evidence for rapid surface precipitation. Environ Sci Technol 48(12):6735–6742

    CAS  PubMed  Google Scholar 

  • Yang X, Post WM, Thornton PE, Jain A (2013) The distribution of soil phosphorus for global biogeochemical modelling. Biogeosciences 10:2525–2537

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele D’Amico.

Additional information

Responsible Editor: Felipe E. Albornoz.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, M., Almeida, J.P., Barbieri, S. et al. Ectomycorrhizal utilization of different phosphorus sources in a glacier forefront in the Italian Alps. Plant Soil 446, 81–95 (2020). https://doi.org/10.1007/s11104-019-04342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04342-0

Keywords

Navigation