Skip to main content

Advertisement

Log in

Hydrogen Production from Methane Through Pulsed DC Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A non-equilibrium warm plasma reactor has been constructed for methane reforming and hydrogen production. The discharge reactor was derived with 20 kV pulsed DC power supply with pulse duration of 4 µs, pulse frequency of 33 kHz. Electrical and optical characterizations of the reactor have been investigated. The electrical characteristics of the discharge revealed that the discharge was ignited by streamer to glow transition. The optical characteristics of the discharge revealed that the discharge was found to be strongly non-equilibrium with rotational temperature (Trot) of 2873 K and vibrational temperature (Tvib) of 12,130 K. The Stark broadening of the emitted Hα line profile was used to deduce the electron density, which was found to be in the order of 1016 cm−3. Methane conversion was strongly dependent upon the applied voltage and the methane flow rate. In general, under the specified operating condition, a methane conversion percentage of about 92% and a maximum hydrogen selectivity of 44.6% have been achieved. Specific energy consumption of methane conversion (SEC) and specific energy requirements for hydrogen formation (SER) of 5 eV/molecule has been achieved simultaneously with a maximum hydrogen production energy cost of about 3.8 µg/J. Finally, the decomposition of methane gas resulted in the deposition of an important byproduct namely graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Balat M (2008) Int J Hydrog Energy 33:4013–4429

    Article  CAS  Google Scholar 

  2. Bockris JO’M (2002) Int J Hydrog Energy 27:731–740

    Article  CAS  Google Scholar 

  3. Bartels JR, Pate MB, Olson NK (2010) Int J Hydrog Energy 35:8371–8384

    Article  CAS  Google Scholar 

  4. Muradov NZ, Veziroğlu TN (2005) Int J Hydrog Energy 30:225–237

    Article  CAS  Google Scholar 

  5. Abbas HF, Daud WMAW (2010) Int J Hydrog Energy 35:1160–1190

    Article  CAS  Google Scholar 

  6. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Li Y, Li D, Wang G (2011) Catal Today 162:1–48

    Article  CAS  Google Scholar 

  8. Fridman A, Kennedy LA (2004) Plasma physics and engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Raizer Yuri P (1991) Gas discharge phyiscs. Springer, Berlin

    Book  Google Scholar 

  10. Kado S, Sekine Y, Nozaki T, Okazaki K (2004) Catal Today 89:47–55

    Article  CAS  Google Scholar 

  11. Zhang Y-P, Li Y, Wang Y, Liu C-J, Eliasson B (2003) Catal Today 83:101–109

    Article  CAS  Google Scholar 

  12. Konno K, Onoe K, Takiguchi Y, Yamaguchi T (2013) Green Sustain Chem 3:19–25

    Article  Google Scholar 

  13. Khalifeha O, Taghvaeia H, Mosallanejada A, Rahimpoura MR, Shariatia A (2016) Chem Eng J 294:132–145

    Article  Google Scholar 

  14. Longmier BW, Gallimore AD, Hershkowitz N (2012) Plasma Sources Sci Technol 21:015007 (1–8)

    Article  Google Scholar 

  15. Mishra LN, Shibata K, Ito H, Yugami N, Nishida Y (2004) J Nat Gas Chem 13(2):82–86

    CAS  Google Scholar 

  16. Moshrefi MM, Rashidi F, Bozorgzadeh HR, Zekordi SM (2012) Plasma Chem Plasma Process 32:1157–1168

    Article  CAS  Google Scholar 

  17. Li X-S, Zhu A-M, Wanga K-J, Xua Y, Songa Z-M (2004) Catal Today 98:617–624

    Article  CAS  Google Scholar 

  18. Li X-S, Lin C-K, Shi C, Xu Y, Wang Y-N, Zhu A-M (2008) J Phys D: Appl Phys 41:175203 (1–5)

    Article  Google Scholar 

  19. Gutsol A, Rabinovich A, Fridman A (2011) J Phy D: Appl Phy 44:274001

    Article  Google Scholar 

  20. Ravasio S, Cavallotti C (2012) Chem Eng Sci 84:580–590

    Article  CAS  Google Scholar 

  21. Dimiev AM, Eigler S (2017) Graphene Oxide Fundamentals and Applications. Wiley, New York

    Google Scholar 

  22. Shirai N, Shito H, Ibuka S, Ishii S (2009) Appl Phys Express 2:076001

    Article  Google Scholar 

  23. Staack D, Farouk B, Gutsol A, Fridman A (2005) Plasma Sources Sci Technol 14:700–711

    Article  CAS  Google Scholar 

  24. Machala Z, Marode E, Laux CO, Kruger CH (2004) J Adv Oxid Technol 7(2):133–137

    Google Scholar 

  25. de Regt JM (1996) Ph.D. thesis, Technical University of Eindhoven

  26. Linss V, Kupfer H, Peter S, Richter F (2005) Surf Coat Technol 200:1696–1701

    Article  CAS  Google Scholar 

  27. Aldea E Private communications

  28. Griem HR (1974) Spectral line broadening by plasmas. Academic Press Inc., New York

    Google Scholar 

  29. Allen CW (1964) Astrophysical quantities. The Athlone press, London

    Google Scholar 

  30. Kunze Hans-Joachim (2009) Introduction to plasma spectroscopy. Springer, Berlin

    Book  Google Scholar 

  31. Janev RK, Reiter D (2002) Phys Plasmas 9(9):4071–4081

    Article  CAS  Google Scholar 

  32. Kadoa S, Urasakib K, Sekineb Y, Fujimotoc K, Nozakia T, Okazakia K (2003) Fuel 82:2291–2297

    Article  Google Scholar 

  33. Wang B, Xu G (2003) J Nat Gas Chem 12(3):178–182

    CAS  Google Scholar 

  34. Zhao GB, John S, Zhang JJ, Wang L, Muknahallipatna S, Hamann JC, Ackerman JF, Argyle MD, Plumb OA (2006) Chem Eng J 125:67–79

    Article  CAS  Google Scholar 

  35. Aleknaviciute I (2013) Ph.D. thesis, Brunel University

  36. Redondo AB, Troussard E, van Bokhoven JAA (2012) Fuel Process Technol 104:265–270

    Article  Google Scholar 

  37. Rueangjitt N, Sreethawong T, Chavadej S, Sekiguchi H (2011) Plasma Chem Plasma Process 31(4):517–534

    Article  CAS  Google Scholar 

  38. Michiels D (2016) M.Sc. thesis, Gent University

  39. Tsai C-H, Chen K-T (2009) Int J Hydrog Energy 34:833–838

    Article  CAS  Google Scholar 

  40. Sreethawong T, Thakonpatthanakun P, Chavadej S (2007) Int J Hydrog Energy 32:1067–1079

    Article  CAS  Google Scholar 

  41. Li D, Li X, Bai M, Tao X, Shang S, Dai X, Yin Y (2009) J Fuel Chem Technol 34:308–313

    Google Scholar 

  42. Scaffaro R, Maio A, Lopresti F, Giallombardo D, Botta L, Bondì ML, Agnello S (2016) Compos Sci Technol 128:193–200

    Article  CAS  Google Scholar 

  43. Maio A, Giallombardo D, Scaffaro R, Piccionellob AP, Pibiri I (2016) RSC Adv 6:4603

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Science and Technology Development Fund (STDF), Egypt. Project ID: 389. The authors are greatly indebted for the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour ElSabbagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, N.N., ElSabbagh, M. Hydrogen Production from Methane Through Pulsed DC Plasma. Plasma Chem Plasma Process 37, 1375–1392 (2017). https://doi.org/10.1007/s11090-017-9829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9829-3

Keywords

Navigation