Skip to main content

Advertisement

Log in

Infrastructure hazard resilience trends: an analysis of 25 years of research

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Hazard research has made significant strides over the last several decades, answering critical questions surrounding vulnerability and recovery. Recently, resilience has come to the forefront of scholarly debates and practitioner strategies, yet there remain challenges implementing resilience in practice, the result of a complex web of research that spread across numerous fields of study. As a result, there is a need to analyze and reflect on the current state of resilience literature. We reviewed 241 journal articles from the Web of Science and Engineering Village databases from 1990 to 2015 to analyze research trends in geographic location of studies, methods employed, units of analysis, and resilience dimensions studied, as well as correlations between each of these categories. The majority of the studies analyzed were conducted in North America, used quantitative methods, focused on infrastructure and community units of analysis, and studied governance, infrastructure, and economic dimensions of resilience. This analysis points to the need to: (1) conduct studies in developing country contexts, where resilience is particularly important; (2) employ mixed-methods for additional depth to quantitative studies; (3) connect units of analysis, such as infrastructure and community; and (4) expand on the measurement and study of environmental and social dimensions of resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich DP, Meyer MA (2015) Social capital and community resilience. Am Behav Sci 59:254–269. doi:10.1177/0002764214550299

    Article  Google Scholar 

  • Armaş I (2012) Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania. Nat Hazards 63:1129–1156. doi:10.1007/s11069-012-0209-2

    Article  Google Scholar 

  • Armenakis C, Nirupama N (2013) Prioritization of disaster risk in a community using GIS. Nat Hazards 66:15–29. doi:10.1007/s11069-012-0167-8

    Article  Google Scholar 

  • Arup (2014) City resilience framework. The Rockefeller Foundation, London

    Google Scholar 

  • Barakat S (2003) Housing reconstruction after conflict and disaster. Overseas Development Institute, London

    Google Scholar 

  • Baubion C (2015) Losing memory—the risk of a major flood in the Paris region: improving prevention policies. Water Policy 17:156–179. doi:10.2166/wp.2015.008

    Article  Google Scholar 

  • Bruneau M, Chang SE, Eguchi RT et al (2003) A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq Spectra 19:733–752. doi:10.1193/1.1623497

    Article  Google Scholar 

  • Busby JW, Smith TG, White KL, Strange SM (2013) Climate change and insecurity: mapping vulnerability in Africa. Int Secur 37:132–172. doi:10.1162/ISEC_a_00116

    Article  Google Scholar 

  • Chandra A, Acosta J, Stern S et al (2011) Building community resilience to disasters: a way forward to enhance national health security. RAND Corporation, Santa Monica

    Google Scholar 

  • Cimellaro GP, Solari D (2014) Considerations about the optimal period range to evaluate the weight coefficient of coupled resilience index. Eng Struct 69:12–24. doi:10.1016/j.engstruct.2014.03.003

    Article  Google Scholar 

  • Cimellaro GP, Solari D, Bruneau M (2014) Physical infrastructure interdependency and regional resilience index after the 2011 Tohoku earthquake in Japan: infrastructure interdependency and regional resilience index. Earthq Eng Struct Dyn 43:1763–1784. doi:10.1002/eqe.2422

    Article  Google Scholar 

  • Comerio MC (2014) Housing recovery lessons from Chile. J Am Plan As 80:340–350. doi:10.1080/01944363.2014.968188

    Article  Google Scholar 

  • Comfort LK, McAdoo B, Sweeney P et al (2011) Transition from response to recovery: a knowledge commons to support decision making following the 12 January 2010 Haiti Earthquake. Earthq Spectra 27:S411–S430. doi:10.1193/1.3633342

    Article  Google Scholar 

  • Crowther KG (2008) Decentralized risk management for strategic preparedness of critical infrastructure through decomposition of the inoperability input–output model. Int J Crit Infrastruct Prot 1:53–67. doi:10.1016/j.ijcip.2008.08.009

    Article  Google Scholar 

  • Cutter SL (2016) The landscape of disaster resilience indicators in the USA. Nat Hazards 80:741–758. doi:10.1007/s11069-015-1993-2

    Article  Google Scholar 

  • Cutter SL, Barnes L, Berry M et al (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Change 18:598–606. doi:10.1016/j.gloenvcha.2008.07.013

    Article  Google Scholar 

  • Cutter SL, Burton CG, Emrich CT (2010) Disaster resilience indicators for benchmarking baseline conditions. J Homel Secur Emerg Manag. doi:10.2202/1547-7355.1732

    Google Scholar 

  • Cutter SL, Ash KD, Emrich CT (2014) The geographies of community disaster resilience. Glob Environ Change 29:65–77. doi:10.1016/j.gloenvcha.2014.08.005

    Article  Google Scholar 

  • Freiria S, Tavares AO, Pedro Julião R (2015) The multiscale importance of road segments in a network disruption scenario: a risk-based approach. Risk Anal 35:484–500. doi:10.1111/risa.12280

    Article  Google Scholar 

  • Gavilanes-Ruiz JC, Cuevas-Muñiz A, Varley N et al (2009) Exploring the factors that influence the perception of risk: the case of Volcán de Colima, Mexico. J Volcanol Geotherm Res 186:238–252. doi:10.1016/j.jvolgeores.2008.12.021

    Article  Google Scholar 

  • Grove KJ (2014) Adaptation machines and the parasitic politics of life in Jamaican disaster resilience. Antipode 46:611–628. doi:10.1111/anti.12066

    Article  Google Scholar 

  • Harte EW, Childs IRW, Hastings PA (2009) Imizamo Yethu: a case study of community resilience to fire hazard in an informal Settlement Cape Town, South Africa. Geogr Res 47:142–154. doi:10.1111/j.1745-5871.2008.00561.x

    Article  Google Scholar 

  • Holling C (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23. doi:10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  • International Monetary Fund (2015) Statistical appendix. In: World economic outlook: adjusting to lower commodity prices. Washington

  • Jonkeren O, Giannopoulos G (2014) Analysing critical infrastructure failure with a resilience inoperability input–output model. Econ Syst Res 26:39–59. doi:10.1080/09535314.2013.872604

    Article  Google Scholar 

  • Kahan JH, Allen AC, George JK (2009) An operational framework for resilience. J Homel Secur Emerg Manag. doi:10.2202/1547-7355.1675

    Google Scholar 

  • Kumaraswamy M, Zou W, Zhang J (2015) Reinforcing relationships for resilience—by embedding end-user “people” in public–private partnerships. Civil Eng Environ Syst 32:119–129. doi:10.1080/10286608.2015.1022727

    Article  Google Scholar 

  • Kusumastuti RD, Viverita V, Husodo ZA et al (2014) Developing a resilience index towards natural disasters in Indonesia. Int J Disaster Risk Reduct. doi:10.1016/j.ijdrr.2014.10.007

    Google Scholar 

  • Luna R, Balakrishnan N, Dagli CH (2011) Postearthquake recovery of a water distribution system: discrete event simulation using colored petri nets. J Infrastruct Syst 17:25–34. doi:10.1061/(ASCE)IS.1943-555X.0000039

    Article  Google Scholar 

  • MacAskill K, Guthrie P (2015) A hierarchy of measures for infrastructure resilience—learning from post-disaster reconstruction in Christchurch, New Zealand. Civil Eng Environ Syst 32:130–142. doi:10.1080/10286608.2015.1022728

    Article  Google Scholar 

  • Martin SA (2014) A framework to understand the relationship between social factors that reduce resilience in cities: application to the City of Boston. Int J Disaster Risk Reduct. doi:10.1016/j.ijdrr.2014.12.001

    Google Scholar 

  • Matyas D, Pelling M (2015) Positioning resilience for 2015: the role of resistance, incremental adjustment and transformation in disaster risk management policy. Disasters 39:s1–s18. doi:10.1111/disa.12107

    Article  Google Scholar 

  • Miao X, Tang Y, Xi B (2014) The role of coupling and embeddedness in risk evolution: rethinking the snow event in early 2008, China. Nat Hazards 71:53–61. doi:10.1007/s11069-013-0899-0

    Article  Google Scholar 

  • Mileti D (1999) Disasters by design: a reassessment of natural hazards in the United States. Joseph Henry Press, Washington

    Google Scholar 

  • Multidisciplinary Center for Earthquake Engineering Research (2005) MCEER’s resilience framework. Buffalo

  • National Infrastructure Advisory Council (2009) Critical infrastructure resilience final report and recommendations

  • Norris FH, Stevens SP, Pfefferbaum B et al (2008) Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. Am J Commun Psychol 41:127–150. doi:10.1007/s10464-007-9156-6

    Article  Google Scholar 

  • Orhan E (2014) The role of lifeline losses in business continuity in the case of Adapazari, Turkey. Environ Hazards 13:298–312. doi:10.1080/17477891.2014.922914

    Article  Google Scholar 

  • Ouyang M, Wang Z (2015) Resilience assessment of interdependent infrastructure systems: with a focus on joint restoration modeling and analysis. Reliab Eng Syst Saf 141:74–82. doi:10.1016/j.ress.2015.03.011

    Article  Google Scholar 

  • Prior T, Eriksen C (2013) Wildfire preparedness, community cohesion and social-ecological systems. Glob Environ Change 23:1575–1586. doi:10.1016/j.gloenvcha.2013.09.016

    Article  Google Scholar 

  • Reed DA, Powell MD, Westerman JM (2010) Energy infrastructure damage analysis for hurricane Rita. Nat Hazards Rev 11:102–109. doi:10.1061/(ASCE)NH.1527-6996.0000012

    Article  Google Scholar 

  • Resurreccion JZ, Santos JR (2013) Uncertainty modeling of hurricane-based disruptions to interdependent economic and infrastructure systems. Nat Hazards 69:1497–1518. doi:10.1007/s11069-013-0760-5

    Article  Google Scholar 

  • Romero Lankao P (2010) Water in Mexico City: what will climate change bring to its history of water-related hazards and vulnerabilities? Environ Urban 22:157–178. doi:10.1177/0956247809362636

    Article  Google Scholar 

  • Rose A (2004) Defining and measuring economic resilience to disasters. Disaster Prev Manag 13:307–314. doi:10.1108/09653560410556528

    Article  Google Scholar 

  • Rose A, Krausmann E (2013) An economic framework for the development of a resilience index for business recovery. Int J Disaster Risk Reduct 5:73–83. doi:10.1016/j.ijdrr.2013.08.003

    Article  Google Scholar 

  • Satterthwaite D (2013) The political underpinnings of cities’ accumulated resilience to climate change. Environ Urban 25:381–391. doi:10.1177/0956247813500902

    Article  Google Scholar 

  • Silva R, Martínez ML, Hesp PA et al (2014) Present and future challenges of coastal erosion in Latin America. J Coastal Res 71:1–16. doi:10.2112/SI71-001.1

    Article  Google Scholar 

  • Smith GP, Wenger D (2006) Sustainable disaster recovery: operationalizing an existing agenda. In: Rodriguez H, Quarantelli E, Dynes R (eds) Handbook of disaster research. Springer, New York, pp 234–257

    Google Scholar 

  • Taramelli A, Valentini E, Sterlacchini S (2015) A GIS-based approach for hurricane hazard and vulnerability assessment in the Cayman Islands. Ocean Coast Manag 108:116–130. doi:10.1016/j.ocecoaman.2014.07.021

    Article  Google Scholar 

  • The National Academies (2012) Disaster resilience: a national imperative. National Academies Press, Washington

    Google Scholar 

  • UNISDR (2005) Hyogo framework for action 2005–2015: building the resilience of nations and communities to disasters. United Nations Office for Disaster Risk Reduction, Geneva

    Google Scholar 

  • UNISDR (2015) Sendai framework for disaster risk reduction 2015–2030. United Nations Office for Disaster Risk Reduction, Geneva

    Google Scholar 

  • UNISDR (2016) The human cost of weather related disasters 1995–2015. United Nations Office for Disaster Risk Reduction, Geneva

    Google Scholar 

  • Vugrin ED, Warren DE, Ehlen MA, Camphouse RC (2010) A framework for assessing the resilience of infrastructure and economic systems. In: Gopalakrishnan K, Peeta S (eds) Sustainable and resilient critical infrastructure systems. Springer, Berlin, pp 77–116

    Chapter  Google Scholar 

  • Ward SM, Paulus G (2013) Augmenting Austrian flood management practices through geospatial predictive analytics: a study in Carinthia. Nat Hazards Earth Syst Sci 13:1445–1455. doi:10.5194/nhess-13-1445-2013

    Article  Google Scholar 

  • Wilby RL, Keenan R (2012) Adapting to flood risk under climate change. Prog Phys Geogr 36:348–378. doi:10.1177/0309133312438908

    Article  Google Scholar 

  • Zia A, Wagner CH (2015) Mainstreaming early warning systems in development and planning processes: multilevel implementation of Sendai framework in Indus and Sahel. Int J Disaster Risk Sci 6:189–199. doi:10.1007/s13753-015-0048-3

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1434791, the Nicolas R. and Nancy D. Petry Fellowship in Construction Engineering and Management, and the United States Agency for International Development Office for Foreign Disaster Assistance and Habitat for Humanity International under Award No. AID-OFDA-G-16-00048. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Opdyke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opdyke, A., Javernick-Will, A. & Koschmann, M. Infrastructure hazard resilience trends: an analysis of 25 years of research. Nat Hazards 87, 773–789 (2017). https://doi.org/10.1007/s11069-017-2792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2792-8

Keywords

Navigation