Skip to main content

Advertisement

Log in

Production and Evaluation of In-vitro and In-vivo Effects of P28-IL24, a Promising Anti-breast Cancer Fusion Protein

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Interleukin-24 (IL-24) is known to selectively induce apoptosis in cancer cells through endoplasmic reticulum (ER) stress. However, this protein alone is unable to enter cells and consequently it is not able to inhibit cell proliferation. In this study, we developed a novel recombinant chimeric protein containing IL-24 which is linked to P28, a cancer specific cell-penetrating peptide and P53 stabilizer, to target IL-24 into breast cancer cells. After design, expression and purification of the P28-IL-24 fusion protein and IL-24 as control, specific and non-specific cytolethal effects of this fusion protein were evaluated in-vitro and in-vivo. Cell proliferation assay and cell death mechanism analysis carried out by MTT and flow cytometry, respectively. Afterward, anti-tumor effects of P28-IL-24 in animal model were investigated by hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, respectively. Results showed inhibitory effects on proliferation of MCF-7 and MDA-MB-231 cancer cells by the P28-IL-24 protein. However, HUVEC cells were affected by the fusion protein just at 1.8 µg/ml concentration. In addition, p28-IL-24 showed to induce apoptosis in the mentioned cell lines. Moreover, treatment of inbred Balb/C mice bearing syngenic 4T1 tumor cells with the p28-IL-24 reduced tumor size within the study period (p < 0.05). H&E staining and TUNEL assay, revealed that this tumor growth suppression was associated with increase in necrotic and apoptotic cells. Taken together, the findings of the current study suggest that the chimeric protein p28-IL-24 can serve as a potent candidate for further preclinical evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azab B, Dash R, Das SK, Bhutia SK, Shen XN, Quinn BA, Dmitriev IP (2012) Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad. 5/3) in combination with the apogossypol derivative BI-97C1 (Sabutoclax) improves therapeutic efficacy in low CAR colorectal cancer cells. J Cell Physiol 227(5):2145–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Chen W-W, Zhang H-R, Huang Z-G, Zhou Z-Y, Lou Q-W, Jiang X-Y, Zhu Z-H (2021) Expression and purification of a recombinant ELRL-MAP30 with dual-targeting anti-tumor bioactivity. Protein Expr Purif 185:105893

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, Richards D (2005) Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 11(1):149–159

    Article  CAS  PubMed  Google Scholar 

  • Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Emdad L (2010) The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther 128(2):375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emdad L, Lebedeva IV, Su Z-Z, Gupta P, Sauane M, Dash R, Sarkar D (2009) Historical perspective and recent insights into our understanding of the molecular and biochemical basis of the antitumor properties of mda-7/IL-24. Cancer Biol Ther 8(5):402–411

    Article  CAS  Google Scholar 

  • Fisher PB (2005) Is mda-7/IL-24 a “magic bullet” for cancer? Can Res 65(22):10128–10138

    Article  CAS  Google Scholar 

  • Gao M, Zhou J, Su Z, Huang Y (2017) Bacterial cupredoxin azurin hijacks cellular signaling networks: protein–protein interactions and cancer therapy. Protein Sci 26(12):2334–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemi, A., Ghavimi, R., Momenzadeh, N., Hajian, S., & Mohammadi, M. (2021). Characterization of antitumor activity of a synthetic moronecidin-like peptide computationally predicted from the tiger tail seahorse hippocampus comes in tumor-bearing mice. Int J Peptide Res Ther, 1–11.

  • Ghavimi R, Mohammadi E, Akbari V, Shafiee F, Jahanian-Najafabadi A (2020) In silico design of two novel fusion proteins, p28-IL-24 and p 28–M4, targeted to breast cancer cells. Res Pharma Sci 15(2):200

    Article  Google Scholar 

  • Gupta P, Walter MR, Su Z-Z, Lebedeva IV, Emdad L, Randolph A, Fisher PB (2006) BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Can Res 66(16):8182–8191

    Article  CAS  Google Scholar 

  • Gupta P, Emdad L, Lebedeva IV, Sarkar D, Dent P, Curiel DT, Fisher PB (2008) Targeted combinatorial therapy of non-small cell lung carcinoma using a GST-fusion protein of full-length or truncated MDA-7/IL-24 with Tarceva. J Cell Physiol 215(3):827–836

    Article  CAS  PubMed  Google Scholar 

  • Haviv YS, Blackwell JL, Kanerva A, Nagi P, Krasnykh V, Dmitriev I, Hemminki A (2002) Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Can Res 62(15):4273–4281

    CAS  Google Scholar 

  • Huang, F., Shu, Q., Qin, Z., Tian, J., Su, Z., Huang, Y., & Gao, M. (2020). Anticancer Actions of Azurin and Its Derived Peptide p28. The Protein Journal, 1–8.

  • Lebedeva IV, Su Z-Z, Chang Y, Kitada S, Reed JC, Fisher PB (2002) The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 21(5):708–718

    Article  CAS  PubMed  Google Scholar 

  • Lebedeva IV, Emdad L, Su Z-Z, Gupta P, Sauane M, Sarkar D, Xiao R (2007) mda-7/IL-24, novel anticancer cytokine: focus on bystander antitumor, radiosensitization and antiangiogenic properties and overview of the phase I clinical experience. Int J Oncol 31(5):985–1007

    CAS  PubMed  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11(1):105–128

    Article  CAS  PubMed  Google Scholar 

  • Li Y-J, Liu G, Xia L, Xiao X, Liu JC, Menezes ME, Fisher PB (2015) Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice. Oncotarget 6(35):36943

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277(44):41295–41298

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Ma, J., Qin, L., Shi, X., Si, H., & Wei, Y. (2019). Interleukin-24 enhancing antitumor activity of chimeric oncolytic adenovirus for treating acute promyelocytic leukemia cell. Medicine, 98(22).

  • Lulla RR, Goldman S, Yamada T, Beattie CW, Bressler L, Pacini M, Dunkel IJ (2016) Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A Pediatric Brain Tumor Consortium Study. Neuro Oncol 18(9):1319–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L-J, Ding M, Xu K, Pan J, Yu H, Yang C (2018) Oncolytic adenovirus harboring Interleukin-24 improves chemotherapy for advanced prostate cancer. J Cancer 9(23):4391

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, Bratescu L (2011) A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2. FAK and Akt Angiogenesis 14(3):355–369

    Article  CAS  PubMed  Google Scholar 

  • Mehta RS, Barlow WE, Albain KS, Vandenberg TA, Dakhil SR, Tirumali NR, Livingston RB (2012) Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367(5):435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menezes ME, Shen X-N, Das SK, Emdad L, Guo C, Yuan F, Windle JJ (2015) MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 6(35):36928

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi M, Taheri B, Momenzadeh N, Salarinia R, Nabipour I, Farshadzadeh Z, Bargahi A (2018) Identification and characterization of novel antimicrobial peptide from hippocampus comes by In Silico and experimental studies. Mar Biotechnol 20(6):718–728

    Article  CAS  Google Scholar 

  • Noei A, Nili-Ahmadabadi A, Soleimani M (2019) The enhanced cytotoxic effects of the p28-apoptin chimeric protein as a novel anti-cancer agent on breast cancer cell lines. Drug Res 69(03):144–150

    Article  CAS  Google Scholar 

  • Persaud L, De Jesus D, Brannigan O, Richiez-Paredes M, Huaman J, Alvarado G, Sauane M (2016) Mechanism of action and applications of interleukin 24 in immunotherapy. Int J Mol Sci 17(6):869

    Article  PubMed Central  CAS  Google Scholar 

  • Poindexter NJ, Williams RR, Powis G, Jen E, Caudle AS, Chada S, Grimm EA (2010) IL-24 is expressed during wound repair and inhibits TGFα-induced migration and proliferation of keratinocytes. Exp Dermatol 19(8):714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourhadi M, Jamalzade F, Jahanian-Najafabadi A, Shafiee F (2019) Expression, purification, and cytotoxic evaluation of IL24-BR2 fusion protein. Res Pharma Sci 14(4):320

    Article  Google Scholar 

  • Punj V, Bhattacharyya S, Saint-Dic D, Vasu C, Cunningham EA, Graves J, White B (2004) Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 23(13):2367–2378

    Article  CAS  PubMed  Google Scholar 

  • Roque-Navarro L, Chakrabandhu K, De León J, Rodríguez S, Toledo C, Carr A, Pérez R (2008) Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Mol Cancer Ther 7(7):2033–2041

    Article  CAS  PubMed  Google Scholar 

  • Safari E, Hosseini AZ, Hassan Z, Khajeh K, Ardestani MS, Baradaran B (2014) Cytotoxic effect of immunotoxin containing the truncated form of Pseudomonas exotoxin A and anti-VEGFR2 on HUVEC and MCF-7 cell lines. Cell Journal (yakhteh) 16(2):203

    CAS  Google Scholar 

  • Sauane M, Gopalkrishnan RV, Sarkar D, Su Z-Z, Lebedeva IV, Dent P, Fisher PB (2003) MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev 14(1):35–51

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Sadeghi HM, Jahanian-Najafabadi A (2019) A Bi-functional targeted P28-NRC chimeric protein with enhanced cytotoxic effects on breast cancer cell lines. Iranian J Pharma Res: IJPR 18(2):735

    CAS  Google Scholar 

  • Urra H, Torres VA, Ortiz RJ, Lobos L, Díaz MI, Díaz N, Quest AF (2012) Caveolin-1-enhanced motility and focal adhesion turnover require tyrosine-14 but not accumulation to the rear in metastatic cancer cells. PLoS ONE 7(4):e33085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Can Res 51(11):3062–3066

    CAS  Google Scholar 

  • Xiao B, Li W, Yang J, Guo G, Mao X-H, Zou Q-M (2009) RGD-IL-24, a novel tumor-targeted fusion cytokine: expression, purification and functional evaluation. Mol Biotechnol 41(2):138–144

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Mehta RR, Lekmine F, Christov K, King ML, Majumdar D, Beattie CW (2009) A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Mol Cancer Ther 8(10):2947–2958

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Christov K, Shilkaitis A, Bratescu L, Green A, Santini S, Beattie C (2013) p28, a first in class peptide inhibitor of cop1 binding to p53. Br J Cancer 108(12):2495–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Gupta TKD, Beattie CW (2016) p28-mediated activation of p53 in G2–M phase of the cell cycle enhances the efficacy of DNA damaging and antimitotic chemotherapy. Can Res 76(8):2354–2365

    Article  CAS  Google Scholar 

  • Yang M, Yang C, Tao Y, Tang J, Huang Q, Guo W, Jiang G (2018) Combination therapy with F5/35 fiber chimeric conditionally replicative adenoviruses expressing IL-24 enhances the antitumor effect of temozolomide against melanoma. Cancer Med 7(12):5928–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yin H, Wei Y, Fang L, Chai D, Zhang Q, Zheng J (2019) Tumor-penetrating peptide enhances antitumor effects of IL-24 against prostate cancer. Translational Oncology 12(3):453–461

    Article  PubMed  Google Scholar 

  • Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X (2017) Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8(1):1913

    Article  PubMed  Google Scholar 

  • Yuan S, Fang X, Xu Y, Ni A, Liu X-Y, Chu L (2016) An oncolytic adenovirus that expresses the HAb18 and interleukin 24 genes exhibits enhanced antitumor activity in hepatocellular carcinoma cells. Oncotarget 7(37):60491

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sun A, Xu R, Tao X, Dong Y, Lv X, Wei D (2016a) Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J Cell Physiol 231(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu R, Tao X, Dong Y, Lv X, Sun A, Wei D (2016b) TAT-IL-24-KDEL-induced apoptosis is inhibited by survivin but restored by the small molecular survivin inhibitor, YM155, in cancer cells. Oncotarget 7(24):37030

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Wei L, Zhang H, Chen J, Qin X (2012) Oncolytic adenovirus armed with IL-24 inhibits the growth of breast cancer in vitro and in vivo. J Exp Clin Cancer Res 31(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article was funded by Isfahan University of Medical Sciences Grant No. 198137 and 198225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jahanian-Najafabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavimi, R., Akbari, V. & Jahanian-Najafabadi, A. Production and Evaluation of In-vitro and In-vivo Effects of P28-IL24, a Promising Anti-breast Cancer Fusion Protein. Int J Pept Res Ther 27, 2583–2594 (2021). https://doi.org/10.1007/s10989-021-10275-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-021-10275-z

Keywords

Navigation