Skip to main content
Log in

Isothermal decomposition and mechanism of N-guanylurea dinitramide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The isothermal decomposition of a new material with high energy, namely N-guanylurea dinitramide (FOX-12), was studied by a self-established isothermal decomposition gas metering device. The gas pressure versus time curves of the isothermal decomposition of FOX-12 were obtained at temperature intervals within 120 °C and 170 °C. An extremely long lag phase and acceleration period were found in the decomposition process of FOX-12. The kinetic parameters of FOX-12 were obtained by the Arrhenius equation and model-fitting method. Results of the two methods were consistent, and the activation energy of the acceleration period was smaller than that of the lag phase. With an average Ea of 159.4 kJ mol−1 and lnA of 34.74 s−1 were obtained at the lag phase, whereas an average Ea of 125.6 kJ mol−1 and lnA of 26.97 s−1 were noted at the acceleration period. The model-fitting method further proved that isothermal decomposition at 120–160 °C conformed to no. 28 corresponding to the reaction order n = 1/4, whether at the lag phase or acceleration period. The time required for decomposition was estimated to be 9.8 years when the extent of reaction reached 0.1% at ambient temperature (25 °C). The residual phase after FOX-12 decomposition was analyzed by Fourier transform infrared spectroscopy, and gases were analyzed by gas chromatography, and the possible decomposition process was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Östmark H, Bemm U, Bergman H, Langlet A. N-guanylurea-dinitramide: a new energetic material with low sensitivity for propellants and explosives applications. Thermochim Acta. 2002;384(1–2):253–9.

    Article  Google Scholar 

  2. Liu Q, Wang BZ, Zhang ZZ, Zhu CH, Lian P. Synthesis and properties of N-guanylurea dinitramide. Chin J Explos Propellants. 2006;29(1):29–31.

    Google Scholar 

  3. Liu HZ, Xu HX, Li Q, Li N, Wang XM, Chen JZ. Synthesis and application progress of GUDN. Chem Propellants Polym Mater. 2009;7(4):13–6.

    Google Scholar 

  4. Wang K, Chen JG, Wang BZ, Lu J, Wang WL, Liu FY, Zhou C, Lian P, Liu ZW, Liu ZT. Mechanisms and kinetics of the synthesis of FOX-12. Chem J Chin Univ. 2015;36(3):531–8.

    CAS  Google Scholar 

  5. Badgujar DM, Wagh RM, Pawar SJ, Sikder AK. Process optimization for synthesis of N-guanylurea dinitramide (GUDN). Propellants Explos Pyrot. 2014;39(5):658–61.

    Article  CAS  Google Scholar 

  6. Liu N, Zhou C, Sun YJ, Wang BZ, Wang WL. Molecular dynamics simulations on crystal morphology of N-guanylurea-dinitramide. Chem J Chin Univ. 2017;38(12):2231–7.

    Google Scholar 

  7. Wang BZ, Liu Q, Zhang ZZ, Ji YP, Zhu CH. Study on properties of FOX-12. Chin J Energy Mater. 2004;12(1):38–9.

    CAS  Google Scholar 

  8. Zhang JQ, Zhao WW, Ji TZ, Gao HX, Hu RZ. The dissolution properties of N-guanylurea-dinitramide (FOX-12) in dimethyl sulfoxide (DMSO). J Therm Anal Calorim. 2014;115(1):641–6.

    Article  CAS  Google Scholar 

  9. Perreault NN, Halasz A, Thiboutot S, Ampleman G, Hawari J. Joint photomicrobial process for the degradation of the insensitive munition, N-Guanylurea-dinitramide (FOX-12). Environ Sci Technol. 2013;47(10):5193–8.

    Article  CAS  Google Scholar 

  10. Gao HX, Zhang H, Zhao FQ, Hu RZ, Ma HX. Kinetic behaviour of the exothermic decomposition reaction of N-guanylurea dinitramide. Acta Phys Chim Sin. 2008;24(3):453–8.

    Article  CAS  Google Scholar 

  11. Santhosh G, Soumyamol PB, Sreejith M, Reshmi S. Iso-conversional approach for the non-isothermal decomposition kinetics of guanylurea dinitramide (GUDN). Thermochim Acta. 2016;632:46–51.

    Article  CAS  Google Scholar 

  12. Zhao FQ, Chen P, Yuan HA, Gao SL, Hu RZ, Shi QZ. Thermochemical properties and non-isothermal decomposition reaction kinetics of N-guanylurea dinitramide (GUDN). Chin J Chem. 2004;22(2):136–41.

    Article  CAS  Google Scholar 

  13. Chu SJ. Thermal analysis of explosives. 1st ed. Beijing: Science Press; 1994.

    Google Scholar 

  14. Egorshev VY, Sinditskii VP, Smirnov SP. A comparative study on two explosive acetone peroxides. Thermochim Acta. 2013;574:154–61.

    Article  CAS  Google Scholar 

  15. Zeman S, Elbeih A, Yan QL. Note on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in Formex P1 matrix. J Therm Anal Calorim. 2013;111(2):1503–6.

    Article  CAS  Google Scholar 

  16. Liu R, Zhou ZN, Yin YL, Yang L, Zhong TL. Dynamic vacuum stability test method and investigation on vacuum thermal decomposition of HMX and CL-20. Thermochim Acta. 2012;537:13–9.

    Article  CAS  Google Scholar 

  17. Liu R, Zhang TL, Yang L, Zhou ZN, Hu XC. Research on thermal decomposition of trinitrophloroglucinol salts by DSC, TG and DVST. Cent Eur J Chem. 2013;11(5):774–81.

    CAS  Google Scholar 

  18. Galwey AK. Thermal reactions involving solids: a personal view of selected features of decompositions, thermal analysis and heterogeneous catalysis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09461-w.

    Article  Google Scholar 

  19. Chovancová M, Zeman S. Study of initiation reactivity of some plastic explosives by vacuum stability test and non-isothermal differential thermal analysis. Thermochim Acta. 2007;460(1):67–76.

    Article  Google Scholar 

  20. Xiao YY, Jin B, Peng RF, Zhang QC, Liu QQ, Chu SJ, Guo ZC. Thermal decomposition of CL-20 via a self-modified dynamic vacuum stability test. J Therm Anal Calorim. 2017;128(3):1833–40.

    Article  CAS  Google Scholar 

  21. Luo LQ, Jin B, Xiao YY, Zhang QC, Chai ZH, Huang Q, Chu SJ, Peng RF. Study on the isothermal decomposition kinetics and mechanism of nitrocellulose. Polym Test. 2019;75:337–43.

    Article  CAS  Google Scholar 

  22. Luo LQ, Guo PL, Jin B, Xiao YY, Zhang QC, Chu SJ, Peng RF. An improved isothermal decomposition dynamics research instrument and its application in HMX/TNT/Al composite explosive. J Therm Anal Calorim. 2019;139:2265–72.

    Article  Google Scholar 

  23. Luo LQ, Jin B, Chai ZH, Huang Q, Chu SJ, Peng RF. Interaction and mechanism of nitrocellulose and N-methyl-4-nitroaniline by isothermal decomposition method. Cellulose. 2019;26:9021–33.

    Article  CAS  Google Scholar 

  24. Huang Q, Liu XW, Xiao YY, Luo LQ, Luo G, Jin B, Peng RF, Chu SJ. Isothermal thermal decomposition of the HMX-based PBX explosive JOL-1. J Energy Mater. 2020;4:1–9.

    Google Scholar 

  25. Luo LQ, Chai ZH, Jin B, Huang Q, Guo ZL, Peng RF. Isothermal thermal decomposition of CL-20/HMX co-crystal explosive. CrystEngComm. 2020;22:1473–9.

    Article  CAS  Google Scholar 

  26. Luo LQ, Jin B, Chai ZH, Huang Q, Chu SJ, Peng RF. The effects of aniline stabilizers on nitrocellulose based on isothermal thermal decomposition. Propellants Explos Pyrot. 2020;45:1–10.

    Article  Google Scholar 

  27. Gábor V, Wang L, Skreiberg Y. Non-isothermal kinetics: best-fitting empirical models instead of model-free methods. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09162-z.

    Article  Google Scholar 

  28. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  29. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.

    Google Scholar 

  30. Judge MD. An investigation of composite propellant accelerated ageing mechanisms and kinetics. Propellants Explos Pyrot. 2010;28(3):114–9.

    Article  Google Scholar 

  31. Liu ZR, Shao YH, Ren XN, Chang H. Mathematical models and its calculations for predicting the life of explosives and propellants. Chin J Explos Propellants. 2016;39(2):1–7.

    Google Scholar 

Download references

Acknowledgements

We are grateful for financial support by the Science Challenge Project (Project No. TZ2018004), the Natural Science Foundation of China (21875192), Key Projects of the Pre-research Fund of the General Armament Department (Project No. 6140720020101), National Defense Technology Foundation Project (Project No. JSJL2016404B002) and the Institute of Chemical Materials, China Academy of Engineering Physics (Project No. 18zh0080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Jin or Rufang Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Jin, B., Guo, Z. et al. Isothermal decomposition and mechanism of N-guanylurea dinitramide. J Therm Anal Calorim 146, 2577–2585 (2021). https://doi.org/10.1007/s10973-020-10333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10333-6

Keywords

Navigation