Skip to main content
Log in

Physical structure and mechanical properties of polyamide/bamboo composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main objective of this work is to process innovative bamboo flour (BF)-reinforced polymer composites. In this context, polyamide 11 (PA 11) is used as technical matrix. Moreover, BF is treated with tetraethyl orthosilicate (TEOS) playing the role of coupling agent. SEM observations show no influence of TEOS on the affinity. The composites were analysed by DSC and DMA, in comparison with neat PA 11. DSC analyses of PA 11/BF highlight that there is no significant modification of the percentage of crystallinity upon introduction of BF whatever the treatment is. Concerning the amorphous phase, only a slight shift of the glass transition of PA 11 from 35 °C (PA 11) to 38 °C (PA 11/BF composites) is recorded. This shift can be explained by physical bonds at the interface PA 11/BF. DMA analyses allow us to explore the role of BF fillers onto the properties of PA 11/BF composites. The first observation is a slight improvement of the shear modulus G′ when the concentration in TEOS increases. The β relaxation at −80 °C is associated with the mobility of the complexes free amide groups/water molecules. There is no shift of the peak due to the presence of BF fillers. The magnitude and width of the relaxation increase with BF and also with TEOS treatment. These observations highlight the increase of hydrogen-bonded water in various sites of the vitreous state. The α relaxation is associated with the anelastic mobility liberated at the glass transition. For PA 11/BF composites, it is constituted by two components: the lower-temperature one due to neat polyamide and a higher-temperature one associated with PA 11/BF amorphous domains with a lower thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;. doi:10.1016/j.progpolymsci.2012.04.003.

    Google Scholar 

  2. Zini E, Scandola M. Green composites: an overview. Polym Compos. 2011;. doi:10.1002/pc.21224.

    Google Scholar 

  3. Müssig J. Industrial applications of natural fibres: structure, properties and technical applications. 1st ed. Chichester: Wiley; 2010.

    Book  Google Scholar 

  4. John M, Thomas S. Biofibres and biocomposites. Carbohydr Polym. 2008;. doi:10.1016/j.carbpol.2007.05.040.

    Google Scholar 

  5. Bledzki A, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;. doi:10.1016/S0079-6700(98)00018-5.

    Google Scholar 

  6. Klyosov AA. Wood-plastic composites. 1st ed. Hoboken: Wiley; 2007.

    Book  Google Scholar 

  7. Abdul-Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS. Bamboo fibre reinforced biocomposites: a review. Mater Des. 2012;. doi:10.1016/j.matdes.2012.06.015.

    Google Scholar 

  8. Adhikari R, Bhandari NL, Causin V, Le HH, Radusch H-J, Michler GH, et al. Study of morphology, mechanical properties, and thermal behavior of green aliphatic–aromatic copolyester/bamboo flour composites. Polym Eng Sci. 2012;. doi:10.1002/pen.23335.

    Google Scholar 

  9. Yu Y, Wang H, Lu F, Tian G, Lin J. Bamboo fibers for composite applications: a mechanical and morphological investigation. J Mater Sci. 2013;. doi:10.1007/s10853-013-7951-z.

    Google Scholar 

  10. Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P. Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci. 2010;. doi:10.1016/j.progpolymsci.2010.01.001.

    Google Scholar 

  11. Gupta A, Kumar A, Patnaik A, Biswas S. Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites. Int J Polym Sci. 2011;. doi:10.1155/2011/592906.

    Google Scholar 

  12. Glória GO, Margem FM, Ribeiro CGD, de Moraes YM, da Cruz RB, Silva FDA, Monteiro SN. Charpy impact tests of epoxy composites reinforced with giant bamboo fibers. Mater Res. 2015. doi:10.1590/1516-1439.360614.

    Google Scholar 

  13. Samanta S, Muralidhar M, Singh TJ, Sarkar S. Characterization of mechanical properties of hybrid bamboo/GFRP and jute/GFRP composites. Mater Today Proc. 2015;. doi:10.1016/j.matpr.2015.07.059.

    Google Scholar 

  14. Nirmal U, Hashim J, Low KO. Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol Int. 2012;. doi:10.1016/j.triboint.2011.10.012.

    Google Scholar 

  15. Jain S, Kumar R, Jindal UC. Mechanical behaviour of bamboo and bamboo composite. J Mater Sci. 1992;. doi:10.1007/BF01165993.

    Google Scholar 

  16. Kushwaha P, Kumar R. Enhanced mechanical strength of BFRP composite using modified bamboos. J Reinf Plast Compos. 2009;. doi:10.1177/0731684408095047.

    Google Scholar 

  17. Kushwaha PK, Kumar R. Studies on water absorption of bamboo-epoxy composites: effect of silane treatment of mercerized bamboo. J Appl Polym Sci. 2010;. doi:10.1002/app.31317.

    Google Scholar 

  18. Das M, Pal A, Chakraborty D. Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo–novolac composites. J Appl Polym Sci. 2006;. doi:10.1002/app.23028.

    Google Scholar 

  19. Das M, Chakraborty D. The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, part 1: polyester resin matrix. J Appl Polym Sci. 2009;. doi:10.1002/app.29342.

    Google Scholar 

  20. Kim H-S, Kim S, Kim H-J, Yang H-S. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta. 2006;. doi:10.1016/j.tca.2006.09.013.

    Google Scholar 

  21. Wu Q, Lu JZ, Mcnabb HS Jr. Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci. 2000;32:88–104.

    Google Scholar 

  22. Mi Y, Chen X, Guo Q. Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci. 1997;. doi:10.1002/(SICI)1097-4628(19970516)64:7<1267:AID-APP4>3.0.CO;2-H.

    Google Scholar 

  23. Samal SK, Mohanty S, Nayak SK. Polypropylene–bamboo/glass fiber hybrid composites: fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. J Reinf Plast Compos. 2009;. doi:10.1177/0731684408093451.

    Google Scholar 

  24. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf. 2010;. doi:10.1016/j.compositesa.2010.03.005.

    Google Scholar 

  25. Lee S-Y, Chun S-J, Doh G-H, Kang I-A, Lee S, Paik K-H. Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. J Compos Mater. 2009;. doi:10.1177/0021998309339352.

    Google Scholar 

  26. Kim JY, Peck JH, Hwang SH, Hong J, Hong SC, Huh W, et al. Preparation and mechanical properties of poly(vinyl chloride)/bamboo flour composites with a novel block copolymer as a coupling agent. J Appl Polym Sci. 2008;. doi:10.1002/app.27759.

    Google Scholar 

  27. Qian S, Wang H, Zarei E, Sheng K. Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Compos Part B Eng. 2015;. doi:10.1016/j.compositesb.2015.08.007.

    Google Scholar 

  28. Mukherjee T, Kao N. PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ. 2011;. doi:10.1007/s10924-011-0320-6.

    Google Scholar 

  29. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T. How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci. 2008;. doi:10.1007/s10853-007-1994-y.

    Google Scholar 

  30. Sukmawan R, Takagi H, Nakagaito AN. Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos Part B Eng. 2016;. doi:10.1016/j.compositesb.2015.08.072.

    Google Scholar 

  31. Lee S-H, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci Manuf. 2006;. doi:10.1016/j.compositesa.2005.04.015.

    Google Scholar 

  32. Liu D, Song J, Anderson DP, Chang PR, Hua Y. Bamboo fiber and its reinforced composites: structure and properties. Cellulose. 2012;. doi:10.1007/s10570-012-9741-1.

    Google Scholar 

  33. Chen Q, Mao X, Xue H, Deng Y, Lin J. Preparation and characterization of bamboo fiber-graft-lauryl methacrylate and its composites with polypropylene. J Appl Polym Sci. 2013;. doi:10.1002/app.39347.

    Google Scholar 

  34. Wang Y, Cao J, Zhu L, Zhao G. Interfacial compatibility of wood flour/polypropylene composites by stress relaxation method. J Appl Polym Sci. 2012;. doi:10.1002/app.36682.

    Google Scholar 

  35. Wunderlich B. Thermal analysis of polymeric materials. 1st ed. Berlin: Springer; 2005.

    Google Scholar 

  36. Gogolewski S. Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 11 (polyundecaneamide). Colloid Polym Sci. 1979;. doi:10.1007/BF01383352.

    Google Scholar 

  37. Xenopoulos A, Wunderlich B. Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides. J Polym Sci, Part B: Polym Phys. 1990;. doi:10.1002/polb.1990.090281209.

    Google Scholar 

  38. Bouzouita S, Salvia M, Ben Daly H, Dogui A, Forest E. Effect of fiber treatment on fiber strength and fiber/matrix interface of hemp reinforced polypropylene composites. Adv Mater Res. 2010;. doi:10.4028/www.scientific.net/AMR.112.1.

    Google Scholar 

  39. Suñol JJ, Saurina J. Thermal analysis of aged HDPE based composites. J Therm Anal Calorim. 2002;. doi:10.1023/A:1020689130128.

    Google Scholar 

  40. Grison K, Pistor V, Scienza LC, Zattera AJ. The physical perspective on the solid and molten states associated with the mechanical properties of eco-friendly HDPE/Pinus taeda wood-plastic composites. J Appl Polym Sci. 2016;. doi:10.1002/app.42887.

    Google Scholar 

  41. Na B, Guo M, Yang J, Tan H, Zhang Q, Fu Q. Crystal morphology and transcrystallization mechanism of isotactic polypropylene induced by fibres: interface nucleation versus bulk nucleation. Polym Int. 2006;. doi:10.1002/pi.1996.

    Google Scholar 

  42. Haddou G, Dandurand J, Dantras E, Maiduc H, Thai H, Giang NV, Trung TH, Ponteins P, Lacabanne C. Mechanical and thermal behaviour of bamboo flour-reinforced XLPE composites. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-015-5176-x.

    Google Scholar 

  43. McCrum NG, Read BE, Williams G. Anelastic and dielectric effects in polymeric solids. 1st ed. New-York: Wiley; 1967.

    Google Scholar 

  44. Kolařík J, Janáček J. Secondary (β) relaxation process of alkaline polycaprolactam swollen by low molecular weight substances. J Polym Sci Part C Polym Symp. 2007;. doi:10.1002/polc.5070160141.

    Google Scholar 

  45. Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S. Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A. 2008;. doi:10.1016/j.compositesa.2008.09.011.

    Google Scholar 

Download references

Acknowledgements

The work was realized in the framework of the International Associated Laboratory (LIA) under the project “Functional Composite Materials” (FOCOMAT) supported by CNRS and VAST. The financial support of Assystem and ANRT is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dantras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddou, G., Dandurand, J., Dantras, E. et al. Physical structure and mechanical properties of polyamide/bamboo composites. J Therm Anal Calorim 129, 1463–1469 (2017). https://doi.org/10.1007/s10973-017-6297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6297-1

Keywords

Navigation