Skip to main content
Log in

Eigenvector Localization in Real Networks and Its Implications for Epidemic Spreading

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The spectral properties of the adjacency matrix, in particular its largest eigenvalue and the associated principal eigenvector, dominate many structural and dynamical properties of complex networks. Here we focus on the localization properties of the principal eigenvector in real networks. We show that in most cases it is either localized on the star defined by the node with largest degree (hub) and its nearest neighbors, or on the densely connected subgraph defined by the maximum K-core in a K-core decomposition. The localization of the principal eigenvector is often strongly correlated with the value of the largest eigenvalue, which is given by the local eigenvalue of the corresponding localization subgraph, but different scenarios sometimes occur. We additionally show that simple targeted immunization strategies for epidemic spreading are extremely sensitive to the actual localization set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  2. Brin, S., Page, L.: The anatomy of a large scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30(1/7), 107–117 (1998). https://doi.org/10.1016/S0169-7552(98)00110-X

    Article  Google Scholar 

  3. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105, 218,701 (2010). https://doi.org/10.1103/PhysRevLett.105.218701

    Article  Google Scholar 

  4. Castellano, C., Pastor-Satorras, R.: Competing activation mechanisms in epidemics on networks. Sci. Rep. 2, 00,371 (2012)

    Article  ADS  Google Scholar 

  5. Castellano, C., Pastor-Satorras, R.: Relating topological determinants of complex networks to their spectral properties: structural and dynamical effects. Phys. Rev. X 7, 041,024 (2017). https://doi.org/10.1103/PhysRevX.7.041024

    Article  Google Scholar 

  6. Catanzaro, M., Boguñá, M., Pastor-Satorras, R.: Generation of uncorrelated random scale-free networks. Phys. Rev. E 71, 027,103 (2005)

    Article  Google Scholar 

  7. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Sec. 10, 13 (2008)

    Google Scholar 

  8. Chung, F., Lu, L., Vu, V.: Spectra of random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 100, 6313–6318 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: k-core organization of complex networks. Phys. Rev. Lett. 96(4), 040,601 (2006). https://doi.org/10.1103/PhysRevLett.96.040601

    Article  Google Scholar 

  10. Ferreira, S.C., Castellano, C., Pastor-Satorras, R.: Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E 86, 041,125 (2012)

    Article  Google Scholar 

  11. Gantmacher, F.R.: The Theory of Matrices, vol. II. Chelsea Publishing Company, New York (1974)

    Google Scholar 

  12. Goltsev, A.V., Dorogovtsev, S.N., Oliveira, J.G., Mendes, J.F.F.: Localization and spreading of diseases in complex networks. Phys. Rev. Lett. 109, 128,702 (2012). https://doi.org/10.1103/PhysRevLett.109.128702

    Article  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  14. Karrer, B., Newman, M.E.J.: Message passing approach for general epidemic models. Phys. Rev. E 82(1), 016,101 (2010). https://doi.org/10.1103/PhysRevE.82.016101

    Article  MathSciNet  Google Scholar 

  15. Karrer, B., Newman, M.E.J., Zdeborová, L.: Percolation on sparse networks. Phys. Rev. Lett. 113, 208,702 (2014). https://doi.org/10.1103/PhysRevLett.113.208702

    Article  Google Scholar 

  16. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953). https://doi.org/10.1007/BF02289026

    Article  MathSciNet  MATH  Google Scholar 

  17. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2(5), 348–351 (2006)

    Article  Google Scholar 

  18. Krzakala, F., Moore, C.: Spectral redemption in clustering sparse networks. Proc. Natl. Acad. Sci. 110(52), 20935–20940 (2013). https://doi.org/10.1073/pnas.1312486110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Martin, T., Zhang, X., Newman, M.E.J.: Localization and centrality in networks. Phys. Rev. E 90, 052,808 (2014)

    Article  Google Scholar 

  20. Milanese, A., Sun, J., Nishikawa, T.: Approximating spectral impact of structural perturbations in large networks. Phys. Rev. E 81, 046,112 (2010). https://doi.org/10.1103/PhysRevE.81.046112

    Article  Google Scholar 

  21. Newman, M.: Networks: An Introduction. Oxford University Press Inc, New York (2010)

    Book  Google Scholar 

  22. Pastor-Satorras, R., Castellano, C.: Distinct types of eigenvector localization in networks. Sci. Rep. 6, 18,847 (2016). https://doi.org/10.1038/srep18847

    Article  Google Scholar 

  23. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036,104 (2002). https://doi.org/10.1103/PhysRevE.65.036104

    Article  Google Scholar 

  25. Pomerance, A., Ott, E., Girvan, M., Losert, W.: The effect of network topology on the stability of discrete state models of genetic control. Proc. Natl. Acad. Sci. 106(20), 8209–8214 (2009). https://doi.org/10.1073/pnas.0900142106

    Article  ADS  Google Scholar 

  26. Restrepo, J.G., Ott, E., Hunt, B.R.: Onset of synchronization in large networks of coupled oscillators. Phys. Rev. E 71, 036,151 (2005). https://doi.org/10.1103/PhysRevE.71.036151

    Article  MathSciNet  Google Scholar 

  27. Restrepo, J.G., Ott, E., Hunt, B.R.: Characterizing the dynamical importance of network nodes and links. Phys. Rev. Lett. 97, 094,102 (2006). https://doi.org/10.1103/PhysRevLett.97.094102

    Article  Google Scholar 

  28. Restrepo, J.G., Ott, E., Hunt, B.R.: Weighted percolation on directed networks. Phys. Rev. Lett. 100, 058,701 (2008). https://doi.org/10.1103/PhysRevLett.100.058701

    Article  Google Scholar 

  29. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287 (1983). https://doi.org/10.1016/0378-8733(83)90028-X

    Article  MathSciNet  Google Scholar 

  30. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  31. Van Mieghem, P., Stevanović, D., Kuipers, F., Li, C., van de Bovenkamp, R., Liu, D., Wang, H.: Decreasing the spectral radius of a graph by link removals. Phys. Rev. E 84, 016,101 (2011). https://doi.org/10.1103/PhysRevE.84.016101

    Article  Google Scholar 

  32. Van Mieghem, P., Omic, J., Kooij, R.E.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    Article  Google Scholar 

  33. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: 22nd International Symposium on Reliable Distributed Systems (SRDS’03), pp. 25–34. IEEE Computer Society, Los Alamitos, CA, USA (2003)

  34. Wang, Z., Bauch, C.T., Bhattacharyya, S., d’Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathé, M., Zhao, D.: Statistical physics of vaccination. Phys. Rep. 664(Supplement C), 1–113 (2016). https://doi.org/10.1016/j.physrep.2016.10.006. http://www.sciencedirect.com/science/article/pii/S0370157316303349. Statistical physics of vaccination

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Castellano.

Additional information

We acknowledge financial support from the Spanish MINECO, under Projects No. FIS2013-47282-C2-2 and No. FIS2016-76830-C2-1-P. R. P.-S. acknowledges additional financial support from ICREA Academia, funded by the Generalitat de Catalunya.

Appendix

Appendix

In this appendix we present data about the real-world networks considered in the analysis.

Table 1 Topological and spectral properties of the real networks considered: ratio of the distance between the actual largest eigenvalue \(\varLambda _M\) and the LEV’s of the relevant subgraphs (star centered at the hub and max K-core), \(d_\mathrm {star} / d_\mathrm {K_M}\); network size N, relative weight of the PEV on the star centered in the hub, \(W_\mathrm {H+L}\); relative weight of the PEV on the max K-core, \(W_\mathrm {K_M}\); largest eigenvalue \(\varLambda _M\); square root of the maximum degree, \(\sqrt{q_\mathrm {max}}\); average degree of the max K-core, \(\langle {q} \rangle _\mathrm {K_M}\); size of the max K-core, \(N_\mathrm {K_M}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor-Satorras, R., Castellano, C. Eigenvector Localization in Real Networks and Its Implications for Epidemic Spreading. J Stat Phys 173, 1110–1123 (2018). https://doi.org/10.1007/s10955-018-1970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1970-8

Keywords

Navigation