Skip to main content

Advertisement

Log in

Construction of interface electric field by electrostatic self-assembly: enhancing the photocatalytic performance of 2D/2D Bi12O17Cl2/g-C3N4 nanosheets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi12O17Cl2 is an ideal photocatalytic material with an appropriate band gap and visible light absorption. However, the performance of a single Bi12O17Cl2 photocatalytic material is still limited by the low separation rate of photogenerated electrons and holes. In this paper, the 2D Bi12O17Cl2 and 2D g-C3N4 materials were prepared, and fabricated 2D/2D Bi12O17Cl2/g-C3N4 nanosheets by electrostatic self-assembly using the different surface electrical properties of the two materials. The formation of an electric interface field between Bi12O17Cl2 and g-C3N4 nanosheets and the matched energy band structure of the two materials can effectively promote the separation of electrons and holes and reduce recombination to improve the photocatalytic performance of semiconductor materials. The Bi12O17Cl2/g-C3N4 with appropriate composite ratio has good degradation activity of Rhodamine-B (RhB) organic pollutants. The composite material can degrade nearly 100% of 10 ppm RhB in the reaction time of 2 h under neutral conditions and completely degrade rhodamine B in 90 min under acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, Environ. Sci. Pollut. Res. Int. 27, 2522 (2020). https://doi.org/10.1007/s11356-019-07193-5

    Article  CAS  Google Scholar 

  2. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  3. Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31, 1901997 (2019). https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  4. V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, Front. Mater. Sci. 13, 1 (2019). https://doi.org/10.1007/s11706-019-0453-4

    Article  Google Scholar 

  5. M.B. Tahir, G. Nabi, N. Khalid, M. Rafique, Ceram. Int. 44, 5705 (2018). https://doi.org/10.1016/j.ceramint.2017.12.223

    Article  CAS  Google Scholar 

  6. F. Mian, G. Bottaro, M. Rancan et al., ACS Omega 2, 6298 (2017). https://doi.org/10.1021/acsomega.7b01125

    Article  CAS  Google Scholar 

  7. W. Zhang, Y. Liang, Y. Sun, F. Dong, Appl. Surf. Sci. 455, 236 (2018). https://doi.org/10.1016/j.apsusc.2018.05.171

    Article  CAS  Google Scholar 

  8. F. Chang, X. Wang, J. Luo et al., Mol. Catal. 427, 45 (2017). https://doi.org/10.1016/j.molcata.2016.11.028

    Article  CAS  Google Scholar 

  9. L. Wang, X. Min, X. Sui, J. Chen, Y. Wang, J. Colloid. Interface. Sci. 560, 21 (2020). https://doi.org/10.1016/j.jcis.2019.10.048

    Article  CAS  Google Scholar 

  10. J. Xiong, P. Song, J. Di, H. Li, J. Mater. Chem. A 8, 21434 (2020). https://doi.org/10.1039/D0TA06044E

    Article  CAS  Google Scholar 

  11. C.Y. Wang, X. Zhang, H.B. Qiu, et al., Appl. Catal., B. 200, 659 (2017) https://doi.org/10.1016/j.apcatb.2016.07.054

  12. J. Di, J. Xia, H. Li, S. Guo, S. Dai, Nano Energy 41, 172 (2017). https://doi.org/10.1016/j.nanoen.2017.09.008

    Article  CAS  Google Scholar 

  13. Y. Xi, W. Chen, W. Dong et al., ACS Appl. Mater. Interfaces 13, 39491 (2021). https://doi.org/10.1021/acsami.1c11233

    Article  CAS  Google Scholar 

  14. Y. Zhong, C. Peng, Z. He et al., Catal. Sci. Technol. 11, 27 (2021). https://doi.org/10.1039/D0CY01847C

    Article  CAS  Google Scholar 

  15. W. Shi, M. Li, H. Ren et al., Beilstein J. Nanotechnol. 10, 1360 (2019). https://doi.org/10.3762/bjnano.10.134

    Article  CAS  Google Scholar 

  16. Y.M. Feng, X.F. Wu, Z.Q. Wang et al., J. Mater. Sci.: Mater. Electron. 30, 9379 (2019). https://doi.org/10.1007/s10854-019-01268-2

    Article  CAS  Google Scholar 

  17. Z. He, J. Zhang, X. Li, S. Guan, M. Dai, S. Wang, Small 16, 2005051 (2020). https://doi.org/10.1002/smll.202005051

    Article  CAS  Google Scholar 

  18. J. Su, G.D. Li, X.H. Li, J.S. Chen, Adv. Sci. 6, 1801702 (2019). https://doi.org/10.1002/advs.201801702

    Article  CAS  Google Scholar 

  19. Z. Shi, Y. Zhang, X. Shen et al., Chem. Eng. J. 386, 12410 (2020). https://doi.org/10.1016/j.cej.2020.124010

    Article  CAS  Google Scholar 

  20. P. Ganguly, M. Harb, Z. Cao et al., ACS Energy Lett. 4, 1687 (2019). https://doi.org/10.1021/acsenergylett.9b00940

    Article  CAS  Google Scholar 

  21. X. Liu, Q. Zhang, D. Ma, Solar RRL. 5, 2000397 (2021). https://doi.org/10.1002/solr.202000397

    Article  CAS  Google Scholar 

  22. Y. Zhang, S. Gu, X. Zhou et al., Catal. Sci. Technol. 11, 4783 (2021). https://doi.org/10.1039/D1CY00539A

    Article  CAS  Google Scholar 

  23. H. Aminzadeh, M. Shahabi Nejad, I. Mohammadzadeh, H. Sheibani, Appl. Organomet. Chem. 35, e6423 (2021). https://doi.org/10.1002/aoc.6423

    Article  CAS  Google Scholar 

  24. K.M. Alam, P. Kumar, P. Kar et al., Nanotechnology 31, 084001 (2019). https://doi.org/10.1088/1361-6528/ab4e2c

    Article  CAS  Google Scholar 

  25. D. Liu, D. Chen, N. Li et al., Angew Chem. Int. Ed. 59, 4519 (2020). https://doi.org/10.1002/anie.201914949

    Article  CAS  Google Scholar 

  26. J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391, 72 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  27. M. Zarei, I. Mohammadzadeh, K. Saidi, H. Sheibani, J. Mater. Sci.: Mater. Electron. 32, 26213 (2021). https://doi.org/10.1007/s10854-021-06790-w

    Article  CAS  Google Scholar 

  28. F. Liang, Y. Zhu, Appl. Catal. B 180, 324 (2016). https://doi.org/10.1016/j.apcatb.2015.05.009

    Article  CAS  Google Scholar 

  29. Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal., B. 220, 290 (2018) https://doi.org/10.1016/j.apcatb.2017.08.049

  30. L. Shi, W. Si, F. Wang, W. Qi, RSC Adv. 8, 24500 (2018). https://doi.org/10.1039/C8RA03981J

    Article  CAS  Google Scholar 

  31. Y. Bao, K. Chen, Appl. Surf. Sci. 437, 51 (2018). https://doi.org/10.1016/j.apsusc.2017.12.075

    Article  CAS  Google Scholar 

  32. X. Zhang, D. An, D. Feng et al., Appl. Surf. Sci. 476, 706 (2019). https://doi.org/10.1016/j.apsusc.2019.01.147

    Article  CAS  Google Scholar 

  33. C. Wang, X. Long, S. Wei et al., ACS Appl. Mater. Interfaces. 11, 29799 (2019). https://doi.org/10.1021/acsami.9b07417

    Article  CAS  Google Scholar 

  34. J. Wang, F. Meng, W. Xie et al., Appl. Phys. A. (2018). https://doi.org/10.1007/s00339-018-2027-1

    Article  Google Scholar 

  35. C. Peng, Z. Jia, Y. Zhong et al., J. Mater. Sci.: Mater. Electron. 32, 17890 (2021). https://doi.org/10.1007/s10854-021-06324-4

    Article  CAS  Google Scholar 

  36. S. Cao, Q. Huang, B. Zhu, J. Yu, J. Power Sources. 351, 151 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.089

    Article  CAS  Google Scholar 

  37. L. Shi, J. Ma, L. Yao, L. Cui, W. Qi, J. Colloid Interface Sci. 519, 1 (2018). https://doi.org/10.1016/j.jcis.2018.02.056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (No. 21978276.) the Fundamental Research Funds for the Central Universities (Grant Nos. 2652019157, 2652019158,; 2652019159).

Funding

This work was partly supported by the National Natural Science Foundation of China (No 21978276.) the Fundamental Research Funds for the Central Universities (Grant Nos. 2652019157, 2652019158, 2652019159).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept and design of this study. TS and YZ carried out material preparation, data collection, and analysis. TS wrote the first draft of the manuscript, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Daimei Chen or Hao Ding.

Ethics declarations

Competing interests

The authors declare there are no any potential conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Zhong, Y., Feng, Y. et al. Construction of interface electric field by electrostatic self-assembly: enhancing the photocatalytic performance of 2D/2D Bi12O17Cl2/g-C3N4 nanosheets. J Mater Sci: Mater Electron 33, 17522–17534 (2022). https://doi.org/10.1007/s10854-022-08614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08614-x

Navigation