Skip to main content
Log in

Investigation of different graphite morphologies for microwave absorption at X and Ku-band frequency range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The different graphite morphologies, like graphite intercalation compound (GIC), expanded graphite (EG), and exfoliated graphite (ExfG), were investigated as microwave absorbing materials (MAMs). The modification of the GIC was carried out in two independent parts, consisting of heat treatment and subsequent ultrasound agitation, forming the EG and ExfG, respectively. The surface morphology and structural characterization were investigated using the scanning electron microscope and Raman spectroscopy. Electromagnetic characterization was performed with a vector network analyzer and rectangular waveguide in the frequency range from 8.2 to 12.4 GHz (X-band) and from 12.4 to 18 GHz (Ku-band). The effects of different graphite morphologies and thickness of the composite were analyzed on the electromagnetic properties. The results of the reflection loss show that the samples affect the performance of the MAMs. The EG sample presents an excellent attenuation of around − 22.5 dB (≈ 99 microwave attenuation) for 2 mm thickness samples within the X-band frequency range. This behavior can be attributed to the expanded and interconnected structure of the EG, which has a large surface area and connectivity between the structures within the composite. Thus, it was found that EG is the best graphite structure for application in microwave absorber of broadband. The GIC and ExfG exhibited poor performance of microwave absorption (above − 10 dB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Zhang, T. Chen, S. Zhong, J. Wang, W. Zhang, X. Zuo, R.G. Maunder, L. Hanzo, Aeronautical ad hoc networking for the internet-above-the-clouds. Proc. IEEE. 107, 868–911 (2019). https://doi.org/10.1109/JPROC.2019.2909694

    Article  Google Scholar 

  2. M.A. Do Amaral Junior, J.S. Marcuzzo, B.D.S. Pinheiro, B.H.K. Lopes, A.P.S. De Oliveira, J.T. Matsushima, M.R. Baldan, Study of reflection process for nickel coated activated carbon fiber felt applied with electromagnetic interference shielding. J. Mater. Res. Technol. 8, 4040–4047 (2019). https://doi.org/10.1016/j.jmrt.2019.07.014

    Article  CAS  Google Scholar 

  3. R.C. Portes, B.H.K. Lopes, M.A. Amaral Junior, D.E. Florez-Vergara, S.F. Quirino, M.R. Baldan, Effect of granulometric distribution on electromagnetic shielding effectiveness for polymeric composite based on natural graphite. Sci. Eng. Compos. Mater. 26, 531–539 (2019)

    Article  CAS  Google Scholar 

  4. R. Pandey, S. Tekumalla, M. Gupta, Enhanced (X-band) microwave shielding properties of pure magnesium by addition of diamagnetic titanium micro-particulates. J. Alloys Compd. 770, 473–482 (2019). https://doi.org/10.1016/j.jallcom.2018.08.147

    Article  CAS  Google Scholar 

  5. A.M. Anjaneyalu, A.S. Zeraati, U. Sundararaj, Enhanced electromagnetic interference shielding effectiveness of hybrid fillers by segregated structure. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5088329

    Article  Google Scholar 

  6. M.A. do Amaral Junior, N.A.S. dos Gomes, S.S. de Pinto, M.C. Rezende, J.S. Marcuzzo, S.F. Quirino, M.R. Baldan, Influence of the permittivity on carbon fiber particulates applied in radiation absorbing materials. Glob. J. Res. Eng. F Electr. Electron. Eng. 17, 1–7 (2017)

    Google Scholar 

  7. R. Anwar, L. Mao, H. Ning, Frequency selective surfaces: a review. Appl. Sci. 8, 1689 (2018). https://doi.org/10.3390/app8091689

    Article  Google Scholar 

  8. A. Syahmi, H. Abdullah, R. Akhbar, N.R. Ahmad, N.S. Sazalee, A.R. Razali, M.N. Taib, Radiation cross section characteristics for isosceles slotted triangle on hollow pyramidal absorber, Proc. – 2018 IEEE Int. Conf. Autom. Control Intell. Syst. I2CACIS 2018. (2019) 35–38. https://doi.org/10.1109/I2CACIS.2018.8603697

  9. C. Xu, S. Qu, Y. Pang, J. Wang, M. Yan, J. Zhang, Z. Wang, W. Wang, Metamaterial absorber for frequency selective thermal radiation. Infrared Phys. Technol. 88, 133–138 (2018). https://doi.org/10.1016/j.infrared.2017.08.017

    Article  CAS  Google Scholar 

  10. K.-H. Wu, K.-F. Cheng, J.-C. Wang, Y.-C. Chang, Preparation of magnetic expanded graphite with microwave absorption and infrared stealth characteristics. Mater. Express. 7, 500–508 (2018). https://doi.org/10.1166/mex.2017.1400

    Article  CAS  Google Scholar 

  11. D.P. Gurgel, I.S. Queiroz, M.Q. da Silva, H.D. de Andrade, U.U. Gomes, M.M. Karimi, Development of a microwave absorbing material based on molybdenum-doped niobium pentoxide. Cerâmica 65, 7–11 (2019). https://doi.org/10.1590/0366-6913201965s12559

    Article  CAS  Google Scholar 

  12. Y. Qing, Y. Li, F. Luo, Electromagnetic interference shielding properties of nitrogen-doped graphene/epoxy composites. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03938-y

    Article  Google Scholar 

  13. S.K. Nayak, S. Mohanty, S.K. Nayak, Silver (Ag) nanoparticle-decorated expanded graphite (EG) epoxy composite: evaluating thermal and electrical properties. J. Mater. Sci. Mater. Electron. 30, 20574–20587 (2019). https://doi.org/10.1007/s10854-019-02423-5

    Article  CAS  Google Scholar 

  14. S. Konwer, J.P. Gogoi, A. Kalita, S.K. Dolui, Synthesis of expanded graphite filled polyaniline composites and evaluation of their electrical and electrochemical properties. J. Mater. Sci. Mater. Electron. 22, 1154–1161 (2011). https://doi.org/10.1007/s10854-010-0276-7

    Article  CAS  Google Scholar 

  15. K. Sever, I.H. Tavman, Y. Seki, A. Turgut, M. Omastova, I. Ozdemir, Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Compos. Part B Eng. 53, 226–233 (2013). https://doi.org/10.1016/j.compositesb.2013.04.069

    Article  CAS  Google Scholar 

  16. D. Borah, N.S. Bhattacharyya, Design and development of expanded graphite-based non-metallic and flexible metamaterial absorber for X-band applications. J. Electron. Mater. 46, 226–232 (2017). https://doi.org/10.1007/s11664-016-4918-2

    Article  CAS  Google Scholar 

  17. K. Jia, W. Liu, K. Li, D. Wang, C. Ma, A novel synthesize approach and electromagnetic wave absorbing properties of expanded graphite/Fe3O4/carbon nanorod composite microstructure. J. Mater. Sci. Mater. Electron. 30, 17011–17019 (2019). https://doi.org/10.1007/s10854-019-02034-0

    Article  CAS  Google Scholar 

  18. A. Nazir, H. Yu, L. Wang, S. Fahad, K.R. Naveed, A. Khan, B.U. Amin, T. Lin, M. Usman, T. Elshaarani, F. Haq, Electrical conductivity and electromagnetic interference shielding properties of polymer/carbon composites. J. Mater. Sci. Mater. Electron. 30, 16636–16650 (2019). https://doi.org/10.1007/s10854-019-02043-z

    Article  CAS  Google Scholar 

  19. Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon N. Y. 48, 4074–4080 (2010). https://doi.org/10.1016/j.carbon.2010.07.014

    Article  CAS  Google Scholar 

  20. M.A. do Amaral Junior, J.T. Matsushima, M.C. Rezende, E.S. Gonçalves, J.S. Marcuzzo, M.R. Baldan, Production and characterization of activated carbon fiber from textile PAN Fiber. J. Aerosp. Technol. Manage 9, 423–430 (2017). https://doi.org/10.5028/jatm.v9i4.831

    Article  CAS  Google Scholar 

  21. L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 5–8 (2004). https://doi.org/10.1103/PhysRevLett.93.247401

    Article  CAS  Google Scholar 

  22. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon N. Y. 43, 1731–1742 (2005). https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  23. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  24. L.C. de Folgueras, M.A. Alves, M.C. Rezende, Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline. Mater. Res. 13, 197–201 (2010). https://doi.org/10.1590/s1516-14392010000200013

    Article  CAS  Google Scholar 

  25. J.P. Gogoi, N.S. Bhattacharyya et al., Synthesis and microwave characterization of expanded graphite/novolac phenolic resin composite for microwave absorber applications. Compos. Part B Eng. 42, 1291–1297 (2011). https://doi.org/10.1016/j.compositesb.2011.01.026

    Article  CAS  Google Scholar 

  26. D.D.L. Chung, A review of exfoliated graphite. J. Mater. Sci. 51, 554–568 (2015). https://doi.org/10.1007/s10853-015-9284-6

    Article  CAS  Google Scholar 

  27. D.D.L. Chung, Graphite intercalation compounds. Ref. Modul. Mater. Sci. Mater. Eng. (2016). https://doi.org/10.1016/b978-0-12-803581-8.02311-0

    Article  Google Scholar 

  28. P. Singh, V.K. Babbar, A. Razdan, R.K. Puri, T.C. Goel, Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites. J. Appl. Phys. 87, 4362–4366 (2000). https://doi.org/10.1063/1.373079

    Article  CAS  Google Scholar 

  29. X. Zhang, G. Zhang, C. Zhao, X. Cheng, Wave-absorbing properties of multi-walled carbon nanotubes reinforced cement-based composites, Proc. 4th Int. Conf. Durab. Concr. Struct. ICDCS 2014. (2014) 212–218

  30. P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for Raman scattering from incompletely graphitized carbons. Carbon N. Y. 20, 427–431 (1982). https://doi.org/10.1016/0008-6223(82)90043-4

    Article  CAS  Google Scholar 

  31. J.P. Gogoi, N.S. Bhattacharyya, Expanded graphite/Novolac phenolic resin composite as single layer electromagnetic wave absorber for x-band applications, Int. Conf. Commun. Electron. Syst. Des., SPIE, 2013: 876005. https://doi.org/10.1117/12.2009485

  32. X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, J. Gou, One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6, 8140–8148 (2014). https://doi.org/10.1039/c4nr01738b

    Article  CAS  Google Scholar 

  33. U.J. Mahanta, M. Borah, N.S. Bhattacharyya, J.P. Gogoi, High-performance broadband microwave absorbers using multilayer dual-phase dielectric composites. J. Electron. Mater. 48, 2438–2448 (2019). https://doi.org/10.1007/s11664-019-07038-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank INPE facilities and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, A.F., de Oliveira, A.P.S., Rodrigues, A.C. et al. Investigation of different graphite morphologies for microwave absorption at X and Ku-band frequency range. J Mater Sci: Mater Electron 31, 19064–19073 (2020). https://doi.org/10.1007/s10854-020-04443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04443-y

Navigation