Skip to main content
Log in

Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the results of the structural and dielectric investigation of pure, Mn-doped, and Ni-doped ZnO nanoparticles (NPs), which have been prepared by simple sol–gel method using zinc acetate as precursor, are studied. The synthesized samples are examined via XRD at 300 K, FE-SEM, FTIR, and μ Autolab/FRA2 impedance spectroscopy techniques. XRD results and calculated lattice parameters of all synthesized samples have revealed that diffraction peaks are well matched to the JCPDS card No. 036-1451. FE-SEM obtained images confirm the formation of NPs. The FTIR graphs exhibit the characteristics transmittance peaks at 510.01 cm−1, 514.36 cm−1, and 509.43 cm−1 for pure, Mn-doped, and Ni-doped ZnO, respectively. This technique also authenticates the existence of ZnO NPs and doped ones. The dielectric measurements of all synthesized samples have been done in the ranges of 10−3 to 106 Hz. Dielectric investigations reveal that the size of the NPs and dopant type have a great effect on the dielectric manner of samples. The obtained experimental results exhibit that the dielectric constant, loss tangent, electric modulus, and AC electrical conductivity parameters have intense frequency dependence. AC conductivity increases with frequency increment but decreases with doping, making it a potential option for device applications. In principle, an increment in capacitance and dielectric constants values has caused a decrement in frequency, while on the contrary, frequency increasing exhibits an increment of the AC electrical conductivity and electric modulus values. Finally, the magnetic studies extracted from electrical measurement are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Koo, R. Yoo, S.P. Woo, H.-S. Lee, W. Lee, Sens. Actuators B Chem. 280, 109 (2019)

    CAS  Google Scholar 

  2. C. Madhu, I. Kaur, N. Kaur, J. Mater. Sci. 29, 7785 (2018)

    CAS  Google Scholar 

  3. P. Meng, X. Zhao, Z. Fu, J. Wu, J. Hu, J. He, J. Alloys Compd. 789, 948 (2019)

    CAS  Google Scholar 

  4. X. Suo, S. Zhao, Y. Ran, H. Liu, Z. Jiang, Y. Li, Z. Wang, Surf. Coat. Technol. 357, 978 (2019)

    CAS  Google Scholar 

  5. A. Ulyankina, I. Leontyev, M. Avramenko, D. Zhigunov, N. Smirnova, Mater. Sci. Semicond. Process. 76, 7 (2018)

    CAS  Google Scholar 

  6. V.D. Mote, Y. Purushotham, B.N. Dole, Mater. Des. 96, 99 (2016)

    CAS  Google Scholar 

  7. S. Guo, Q. Hou, C. Zhao, Y. Zhang, Chem. Phys. Lett. 614, 15 (2014)

    CAS  Google Scholar 

  8. R. Nasser, W.B.H. Othmen, H. Elhouichet, Ceram. Int. 45, 8000 (2019)

    CAS  Google Scholar 

  9. B. Hartiti, M. Siadat, E. Comini, H.M.M.M. Arachchige, S. Fadili, P. Thevenin, J. Mater. Sci. 30, 7681 (2019)

    Google Scholar 

  10. D. Sharma, R. Jha, J. Alloys Compd. 698, 532 (2017)

    CAS  Google Scholar 

  11. N.X. Sang, N.M. Quan, N.H. Tho, N.T. Tuan, T.T. Tung, Semicond. Sci. Technol. 34, 25013 (2019)

    CAS  Google Scholar 

  12. C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, J. Mater. Sci. 29, 7020 (2018)

    CAS  Google Scholar 

  13. A. Zia, S. Ahmed, N.A. Shah, M. Anis-ur-Rehman, E.U. Khan, M. Basit, Phys. B Condens. Matter 473, 42 (2015)

    CAS  Google Scholar 

  14. K. Ravichandran, K. Karthika, B. Sakthivel, N.J. Begum, S. Snega, K. Swaminathan, V. Senthamilselvi, J. Magn. Magn. Mater. 358, 50 (2014)

    Google Scholar 

  15. K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Ceram. Int. 40, 16799 (2014)

    CAS  Google Scholar 

  16. S.M. Mousavi, A.R. Mahjoub, R. Abazari, J. Mol. Liq. 242, 512 (2017)

    CAS  Google Scholar 

  17. S. Aksoy, Y. Caglar, J. Alloys Compd. 781, 929 (2019)

    CAS  Google Scholar 

  18. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Sens. Actuators B Chem. 292, 24 (2019)

    CAS  Google Scholar 

  19. D. Richard, M. Romero, R. Faccio, Ceram. Int. 44, 703 (2018)

    CAS  Google Scholar 

  20. G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, J. Mater. Sci. 26, 7205 (2015)

    CAS  Google Scholar 

  21. Y. Mao, Y. Li, Y. Zou, X. Shen, L. Zhu, G. Liao, Ceram. Int. 45, 1724 (2019)

    CAS  Google Scholar 

  22. D. Klauson, I. Gromyko, T. Dedova, N. Pronina, M. Krichevskaya, O. Budarnaja, I.O. Acik, O. Volobujeva, I. Sildos, K. Utt, Mater. Sci. Semicond. Process. 31, 315 (2015)

    CAS  Google Scholar 

  23. H.M. Chenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Curr. Appl. Phys. 11, 1071 (2011)

    Google Scholar 

  24. O. S. Heavens, Thin Film Physics (Methuen, 1970)

  25. Y. Liu, H. Liu, Z. Chen, N. Kadasala, C. Mao, Y. Wang, Y. Zhang, H. Liu, Y. Liu, J. Yang, J. Alloys Compd. 604, 281 (2014)

    CAS  Google Scholar 

  26. A.H. Bahrami, H. Ghayour, S. Sharafi, Powder Technol. 249, 7 (2013)

    CAS  Google Scholar 

  27. S.O. Gashti, A. Fattah-Alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloys Compd. 688, 44 (2016)

    CAS  Google Scholar 

  28. T. Debnath, P. Saha, N. Patra, S. Das, S. Sutradhar, J. Appl. Phys. 123, 194101 (2018)

    Google Scholar 

  29. G. Kafili, A. Alhaji, Adv. Powder Technol. 30, 1108 (2019)

    CAS  Google Scholar 

  30. P. Shukla, J.K. Shukla, J. Supercond. Nov. Magn. 32, 721 (2019)

    CAS  Google Scholar 

  31. D. Anbuselvan, S. Muthukumaran, Opt. Mater. (Amst). 42, 124 (2015)

    CAS  Google Scholar 

  32. M. Robles-Águila, J. Luna-López, Á. Hernández de la Luz, J. Martínez-Juárez, M. Rabanal, Crystals 8, 406 (2018)

    Google Scholar 

  33. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Ceram. Int. 40, 13115 (2014)

    CAS  Google Scholar 

  34. G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 33912 (2013)

    Google Scholar 

  35. B. Manikandan, T. Endo, S. Kaneko, K.R. Murali, R. John, J. Mater. Sci. 29, 9474 (2018)

    CAS  Google Scholar 

  36. R. Gopalakrishnan, S. Muthukumaran, J. Mater. Sci. 24, 1069 (2013)

    CAS  Google Scholar 

  37. Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 100 (2012)

    Google Scholar 

  38. M.F. Khan, A.H. Ansari, M. Hameedullah, E. Ahmad, F.M. Husain, Q. Zia, U. Baig, M.R. Zaheer, M.M. Alam, A.M. Khan, Sci. Rep. 6, 27689 (2016)

    CAS  Google Scholar 

  39. R. Siddheswaran, M. Netrvalová, J. Savková, P. Novák, J. Očenášek, P. Šutta, J. Kováč Jr., R. Jayavel, J. Alloys Compd. 636, 85 (2015)

    CAS  Google Scholar 

  40. S. Fabbiyola, V. Sailaja, L.J. Kennedy, M. Bououdina, J.J. Vijaya, J. Alloys Compd. 694, 522 (2017)

    CAS  Google Scholar 

  41. A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Alloys Compd. 730, 399 (2018)

    CAS  Google Scholar 

  42. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B.H. Koo, RSC Adv. 4, 29249 (2014)

    CAS  Google Scholar 

  43. A. Yildiz, B. Yurduguzel, B. Kayhan, G. Calin, M. Dobromir, F. Iacomi, J. Mater. Sci. 23, 425 (2012)

    CAS  Google Scholar 

  44. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940 (2016)

    CAS  Google Scholar 

  45. Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Process. Appl. Ceram. 10, 125 (2016)

    CAS  Google Scholar 

  46. A. Goswami, A.P. Goswami, Thin Solid Films 16, 175 (1973)

    CAS  Google Scholar 

  47. H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, M. Talebian, Curr. Appl. Phys. 11, 409 (2011)

    Google Scholar 

  48. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, New York, 2012)

    Google Scholar 

  49. A. Tataroglu, Ş. Altındal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005)

    CAS  Google Scholar 

  50. I. Khan, S. Khan, W. Khan, Mater. Sci. Semicond. Process. 26, 516 (2014)

    CAS  Google Scholar 

  51. M.M. El-Nahass, H.A.M. Ali, Solid State Commun. 152, 1084 (2012)

    CAS  Google Scholar 

  52. A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, J. Alloys Compd. 622, 687 (2015)

    CAS  Google Scholar 

  53. A. Azam, A.S. Ahmed, M.S. Ansari, A.H. Naqvi, J. Alloys Compd. 506, 237 (2010)

    CAS  Google Scholar 

  54. S. Khera, P. Chand, Chin. J. Phys. 57, 28 (2019)

    CAS  Google Scholar 

  55. R. Khan, S. Fashu, J. Mater. Sci.: Mater. Electron. 28, 4333 (2017)

    CAS  Google Scholar 

  56. M. Ashokkumar, S. Muthukumaran, J. Magn. Magn. Mater. 374, 61 (2015)

    CAS  Google Scholar 

  57. D. Varshney, S. Dwivedi, Mater. Res. Express 2, 106102 (2015)

    Google Scholar 

  58. M. Ashokkumar, S. Muthukumaran, J. Lumin. 162, 97 (2015)

    CAS  Google Scholar 

  59. C.-H. Ho, C.-D. Liu, C.-H. Hsieh, K.-H. Hsieh, S.-N. Lee, Synth. Met. 158, 630 (2008)

    CAS  Google Scholar 

  60. R. Zamiri, B. Singh, I. Bdikin, A. Rebelo, M.S. Belsley, J.M.F. Ferreira, Solid State Commun. 195, 74 (2014)

    CAS  Google Scholar 

  61. M. Kaddes, K. Omri, N. Kouaydi, M. Zemzemi, Appl. Phys. A 124, 518 (2018)

    Google Scholar 

  62. M.D.P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Mater. Chem. Phys. 224, 79 (2019)

    Google Scholar 

  63. D. K. Cheng, Field and Wave Electromagnetics (Pearson Education India, 1989)

  64. J.E. Jaffe, R. Pandey, A.B. Kunz, Phys. Rev. B 43, 14030 (1991)

    CAS  Google Scholar 

  65. V. Pazhanivelu, A.P.B. Selvadurai, R. Kannan, R. Murugaraj, Phys. B Condens. Matter 487, 102 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Mabhouti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzzadeh, P., Mabhouti, K., Golzan, M.M. et al. Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J Mater Sci: Mater Electron 31, 7335–7347 (2020). https://doi.org/10.1007/s10854-019-02517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02517-0

Navigation