Skip to main content
Log in

In situ facile fabrication of Z-scheme leaf-like β-Bi2O3/g-C3N4 nanosheets composites with enhanced visible light photoactivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, leaf-like β-Bi2O3/g-C3N4 nanosheets composites were synthesized via a simple in situ method. β-Bi2O3/g-C3N4 nanocomposites were obtained via calcining the mixtures of g-C3N4 and metallic Bi, while, at the same temperature, in the absence of g-C3N4, metallic Bi formed α-Bi2O3. The presence of β-Bi2O3 in the composite was demonstrated by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy analysis. From scanning electron microscope analysis, the morphology of leaf-like β-Bi2O3 and the g-C3N4 nanosheets were observed. The as-prepared β-Bi2O3/g-C3N4 composite exhibited higher photocatalytic activity than both pure β-Bi2O3 and g-C3N4 for photocatalytic degradation of methylene blue under visible light. The active species capture experiments and photoluminescence experiments illustrated that the degradation mechanism followed the Z-scheme mechanism. This proposed method provides an efficiency way to prepare potential visible light responsive materials for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Wang, J. Zhou, Z. Zhang, J. Yu, W. Cai, Different surfactants-assisted hydrothermal synthesis of hierarchical γ-Al2O3 and its adsorption performances for parachlorophenol. Chem. Eng. J. 233, 168–175 (2013). https://doi.org/10.1016/j.cej.2013.08.029

    Article  Google Scholar 

  2. W. Wang, J. Zhou, G. Achari, J. Yu, W. Cai, Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: adsorption performance, coexisting anions and regeneration studies. Colloids Surf. A 457, 33–40 (2014). https://doi.org/10.1016/j.colsurfa.2014.05.034

    Article  Google Scholar 

  3. J. Boonnorat, S. Techkarnjanaruk, R. Honda et al., Enhanced micropollutant biodegradation and assessment of nitrous oxide concentration reduction in wastewater treated by acclimatized sludge bioaugmentation. Sci. Total Environ. 637–638, 771–779 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.066

    Article  Google Scholar 

  4. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. 29, 1719–1747 (2017). https://doi.org/10.1007/s10854-017-8166-x

    Google Scholar 

  5. Y. Zhang, J. Zhou, Z. Li, Q. Feng, Photodegradation pathway of rhodamine B with novel Au nanorods @ ZnO microspheres driven by visible light irradiation. J. Mater. Sci. 53, 3149–3162 (2017). https://doi.org/10.1007/s10853-017-1779-x

    Article  Google Scholar 

  6. Y. Sun, J. Zhou, W. Cai, R. Zhao, J. Yuan, Hierarchically porous NiAl-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water. Appl. Surf. Sci. 349, 897–903 (2015). https://doi.org/10.1016/j.apsusc.2015.05.041

    Article  Google Scholar 

  7. J. Zhou, J.B. Zhou, W.Q. Cai, R.S. Zhao, J.P. Yuan, Hierarchically porous Zn/Al layered double hydroxides intercalated with citrate and their adsorption toward parachlorophenol in water. Integr. Ferroelectr. 162, 102–112 (2015). https://doi.org/10.1080/10584587.2015.1039444

    Article  Google Scholar 

  8. S.-M. Lam, J.-C. Sin, A.R. Mohamed, A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater. Sci. Semicond. Process. 47, 62–84 (2016). https://doi.org/10.1016/j.mssp.2016.02.019

    Article  Google Scholar 

  9. X.C. Wang, K. Maeda, A. Thomas et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/NMAT2317

    Article  Google Scholar 

  10. D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017). https://doi.org/10.1016/j.apcatb.2017.01.061

    Article  Google Scholar 

  11. S. Ye, R. Wang, M.-Z. Wu, Y.-P. Yuan, A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 358, 15–27 (2015). https://doi.org/10.1016/j.apsusc.2015.08.173

    Article  Google Scholar 

  12. L. Yang, J. Huang, L. Shi et al., A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B 204, 335–345 (2017). https://doi.org/10.1016/j.apcatb.2016.11.047

    Article  Google Scholar 

  13. H. Yang, K. Lv, J. Zhu et al., Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4. Appl. Surf. Sci. 401, 333–340 (2017). https://doi.org/10.1016/j.apsusc.2016.12.238

    Article  Google Scholar 

  14. Y. Shang, X. Chen, W. Liu et al., Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method. Appl. Catal. B 204, 78–88 (2017). https://doi.org/10.1016/j.apcatb.2016.11.025

    Article  Google Scholar 

  15. W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chin. J. Catal. 38, 372–378 (2017). https://doi.org/10.1016/s1872-2067(16)62585-8

    Article  Google Scholar 

  16. N. Tian, Y. Zhang, X. Li et al., Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017). https://doi.org/10.1016/j.nanoen.2017.05.038

    Article  Google Scholar 

  17. H. Wang, W. He, X. Dong, H. Wang, F. Dong, In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4. Sci. Bull. 63, 117–125 (2018). https://doi.org/10.1016/j.scib.2017.12.013

    Article  Google Scholar 

  18. D. Zeng, W.-J. Ong, H. Zheng et al., Ni12P5 nanoparticles embedded into porous g-C3N4 nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H2 production under visible light. J. Mater. Chem. A 5, 16171–16178 (2017). https://doi.org/10.1039/c7ta04816e

    Article  Google Scholar 

  19. J. Xiao, Y. Xie, F. Nawaz, Y. Wang, P. Du, H. Cao, Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl. Catal. B 183, 417–425 (2016). https://doi.org/10.1016/j.apcatb.2015.11.010

    Article  Google Scholar 

  20. W. Iqbal, C. Dong, M. Xing, X. Tan, J. Zhang, Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity. Catal. Sci. Technol. 7, 1726–1734 (2017). https://doi.org/10.1039/c7cy00286f

    Article  Google Scholar 

  21. Y. Deng, L. Tang, C. Feng et al., Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater. 344, 758–769 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.027

    Article  Google Scholar 

  22. Q. Deng, Q. Li, Facile preparation of Mg-doped graphitic carbon nitride composites as a solid base catalyst for Knoevenagel condensations. J. Mater. Sci. 53, 506–515 (2017). https://doi.org/10.1007/s10853-017-1534-3

    Article  Google Scholar 

  23. Y. Wang, S. Zhao, Y. Zhang et al., One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 440, 258–265 (2018). https://doi.org/10.1016/j.apsusc.2018.01.091

    Article  Google Scholar 

  24. M.-H. Vu, M. Sakar, C.-C. Nguyen, T.-O. Do, Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustain. Chem. Eng. 6, 4194–4203 (2018). https://doi.org/10.1021/acssuschemeng.7b04598

    Article  Google Scholar 

  25. M. Mousavi, A. Habibi-Yangjeh, Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts. J. Mater. Sci. 53, 9046–9063 (2018). https://doi.org/10.1007/s10853-018-2213-8

    Article  Google Scholar 

  26. S.-H. Lai, Y.-B. Chen, N. Li, H. Su, S.-H. Guo, Novel g-C3N4 wrapped γ-Al2O3 microspheres heterojunction for efficient photocatalytic application under visible light irradiation. J. Mater. Sci.: Mater. Electron. 29, 4509–4516 (2017). https://doi.org/10.1007/s10854-017-8399-8

    Google Scholar 

  27. H. Xu, Z. Wu, Y. Wang, C. Lin, Enhanced visible-light photocatalytic activity from graphene-like boron nitride anchored on graphitic carbon nitride sheets. J. Mater. Sci. 52, 9477–9490 (2017). https://doi.org/10.1007/s10853-017-1167-6

    Article  Google Scholar 

  28. X. Zhang, Y. Yang, W. Huang et al., g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater. Res. Bull. 99, 349–358 (2018). https://doi.org/10.1016/j.materresbull.2017.11.028

    Article  Google Scholar 

  29. Z. Zhuang, Y. Li, Z. Li et al., MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew. Chem. Int. Ed. 57, 496–500 (2018). https://doi.org/10.1002/anie.201708748

    Article  Google Scholar 

  30. C.-Q. Xu, Y.-H. Xiao, Y.-X. Yu, W.-D. Zhang, The role of hydrogen bonding on enhancement of photocatalytic activity of the acidified graphitic carbon nitride for hydrogen evolution. J. Mater. Sci. 53, 409–422 (2017). https://doi.org/10.1007/s10853-017-1507-6

    Article  Google Scholar 

  31. N.I. Md Rosli, S.-M. Lam, J.-C. Sin, I. Satoshi, A.R. Mohamed, Photocatalytic performance of ZnO/g-C3N4 for removal of phenol under simulated sunlight irradiation. J. Environ. Eng. 144, 04017091 (2018). https://doi.org/10.1061/(asce)ee.1943-7870.0001300

    Article  Google Scholar 

  32. Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong (2018) A hierarchical Z-scheme alpha-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. https://doi.org/10.1002/adma.201706108

    Google Scholar 

  33. X. Dong, J. Li, Q. Xing, Y. Zhou, H. Huang, F. Dong, The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4. Appl. Catal. B 232, 69–76 (2018). https://doi.org/10.1016/j.apcatb.2018.03.054

    Article  Google Scholar 

  34. P. Chen, F. Dong, M. Ran, J. Li, Synergistic photo-thermal catalytic NO purification of MnOx/g-C3N4: enhanced performance and reaction mechanism. Chin. J. Catal. 39, 619–629 (2018). https://doi.org/10.1016/s1872-2067(18)63029-3

    Article  Google Scholar 

  35. Z. Zhang, D. Jiang, C. Xing, L. Chen, M. Chen, M. He, Novel AgI-decorated beta-Bi(2)O(3) nanosheet heterostructured Z-scheme photocatalysts for efficient degradation of organic pollutants with enhanced performance. Dalton Trans. 44, 11582–11591 (2015). https://doi.org/10.1039/c5dt00298b

    Article  Google Scholar 

  36. Y. Shi, L. Luo, Y. Zhang et al., Synthesis and characterization of α/β-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. Ceram. Int. 43, 7627–7635 (2017). https://doi.org/10.1016/j.ceramint.2017.03.057

    Article  Google Scholar 

  37. X. Dang, X. Zhang, Y. Chen et al., Preparation of β-Bi2O3/g-C3N4 nanosheet p–n junction for enhanced photocatalytic ability under visible light illumination. J. Nanopart. Res. 17, 93 (2015). https://doi.org/10.1007/s11051-014-2808-1

    Article  Google Scholar 

  38. X. Xiao, R. Hu, S. Tu et al., One-pot synthesis of micro/nano structured β-Bi2O3 with tunable morphology for highly efficient photocatalytic degradation of methylparaben under visible-light irradiation. RSC Adv. 5, 38373–38381 (2015). https://doi.org/10.1039/c5ra03200h

    Article  Google Scholar 

  39. L. Zhang, G. Wang, Z. Xiong, H. Tang, C. Jiang, Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. Appl. Surf. Sci. 436, 162–171 (2018). https://doi.org/10.1016/j.apsusc.2017.11.280

    Article  Google Scholar 

  40. H. Zou, M. Song, F. Yi et al., Effect of sintering temperature on the photocatalytic activity of carbon–Bi2O3–TiO2 composite. J. Mater. Sci.: Mater. Electron. 29, 2201–2208 (2017). https://doi.org/10.1007/s10854-017-8133-6

    Google Scholar 

  41. C. Chang, H.-C. Yang, N. Gao, S.-Y. Lu, Core/shell p-BiOI/n-β-Bi2O3 heterojunction array with significantly enhanced photoelectrochemical water splitting efficiency. J. Alloys Compd. 738, 138–144 (2018). https://doi.org/10.1016/j.jallcom.2017.12.145

    Article  Google Scholar 

  42. L. Hu, G. Zhang, M. Liu, Q. Wang, P. Wang, Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix. Chem. Eng. J. 338, 300–310 (2018). https://doi.org/10.1016/j.cej.2018.01.016

    Article  Google Scholar 

  43. W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 188, 1–12 (2016). https://doi.org/10.1016/j.apcatb.2016.01.058

    Article  Google Scholar 

  44. W. Zou, Y. Shao, Y. Pu et al., Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Appl. Catal. B 218, 51–59 (2017). https://doi.org/10.1016/j.apcatb.2017.03.085

    Article  Google Scholar 

  45. R. He, J. Zhou, H. Fu, S. Zhang, C. Jiang, Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 430, 273–282 (2018). https://doi.org/10.1016/j.apsusc.2017.07.191

    Article  Google Scholar 

  46. H.-Y. Jiang, G. Liu, T. Wang, P. Li, J. Lin, J. Ye, In situ construction of α-Bi2O3/g-C3N4/β-Bi2O3 composites and their highly efficient photocatalytic performances. RSC Adv. 5, 92963–92969 (2015). https://doi.org/10.1039/c5ra18420g

    Article  Google Scholar 

  47. Y. Hong, C. Li, B. Yin et al., Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3 @ g-C3N4 core/shell nanocomposite. Chem. Eng. J. 338, 137–146 (2018). https://doi.org/10.1016/j.cej.2017.12.108

    Article  Google Scholar 

  48. G. Tan, L. She, T. Liu, C. Xu, H. Ren, A. Xia, Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity. Appl. Catal. B 207, 120–133 (2017). https://doi.org/10.1016/j.apcatb.2017.02.025

    Article  Google Scholar 

  49. D. Chen, S. Wu, J. Fang et al., A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep. Purif. Technol. 193, 232–241 (2018). https://doi.org/10.1016/j.seppur.2017.11.011

    Article  Google Scholar 

  50. Y. Shi, L. Luo, Y. Zhang et al., Synthesis and characterization of porous platelet-shaped α-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. J. Mater. Sci. 53, 1049–1064 (2017). https://doi.org/10.1007/s10853-017-1553-0

    Article  Google Scholar 

  51. M. Xiong, L. Chen, Q. Yuan et al., Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity. Carbon 86, 217–224 (2015). https://doi.org/10.1016/j.carbon.2015.01.023

    Article  Google Scholar 

  52. W. Chen, T. Huang, Y.X. Hua, T.Y. Liu, X.H. Liu, S.M. Chen, Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity. J. Hazard. Mater. 320, 529–538 (2016). https://doi.org/10.1016/j.jhazmat.2016.08.025

    Article  Google Scholar 

  53. Y. Li, S. Wu, L. Huang et al., g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity. J. Phys. Chem. Solids 76, 112–119 (2015). https://doi.org/10.1016/j.jpcs.2014.08.012

    Article  Google Scholar 

  54. J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi(2)O(3)/g-C(3)N(4) with high visible light activity. J. Hazard. Mater. 280, 713–722 (2014). https://doi.org/10.1016/j.jhazmat.2014.08.055

    Article  Google Scholar 

  55. B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344, 188–195 (2015). https://doi.org/10.1016/j.apsusc.2015.03.086

    Article  Google Scholar 

  56. H. Li, Y. Zhou, W. Tu, J. Ye, Z. Zou, State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015). https://doi.org/10.1002/adfm.201401636

    Article  Google Scholar 

  57. P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014). https://doi.org/10.1002/adma.201400288

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21277108; 21476179), the Fundamental Research Funds for the Central Universities, China (WUT: 185208007), one hundred talents project of Guangzhou University and 2016 Wuhan Yellow Crane Talents (Science) Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiabin Zhou or Weiquan Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhou, J., Hu, Z. et al. In situ facile fabrication of Z-scheme leaf-like β-Bi2O3/g-C3N4 nanosheets composites with enhanced visible light photoactivity. J Mater Sci: Mater Electron 29, 14906–14917 (2018). https://doi.org/10.1007/s10854-018-9629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9629-4

Navigation