Skip to main content

Advertisement

Log in

Effect of bismuth–tin alloy particle diameter on bonding strength of copper nanoparticles/bismuth–tin solder hybrid joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of the diameter of Bi–Sn alloy particles on the bonding strength of hybrid joints formed between SiC chips and direct-bonded copper (DBC) plates using a Cu nanoparticles/Bi–Sn solder was studied. The bonding strength was the highest at 40 MPa for a Bi–Sn alloy particle diameter of 10 µm. Further, the bonding strength was dependent on the area of the bonding layer adhering to the SiC-side fracture surface, as determined by the die-shear test. Ni, which was deposited on the SiC chips and DBC plates before the bonding process, remained near the interfacial area of the bonding layer in the joints formed using the 5 µm particles. In contrast, Ni diffused all over the bonding area, with the exception of the interfacial area where Cu–Sn compounds were formed, in the joints produced using the larger alloy particles. The distribution of Sn in the bonding layer became more uniform and the segregation of Bi at the interface became more pronounced as the particle size was reduced. Further, with an increase in the particle size, the Ag layers deposited on the surfaces of the SiC chips and DBC plates diffused into the bonding layer after the first firing step at 473 K, which was performed before the secondary firing step at 623 K. These results imply that the diameter of the Bi–Sn solder particles in hybrid joints affects the interfacial structure, as it governs the wetting behavior of the Bi–Sn solder and hence has a determining effect on the bonding strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE. 90, 1065 (2002)

    Article  Google Scholar 

  2. G. Liu, B.R. Tuttle, S. Dhar, Appl. Phys. Rev. 2, 021307 (2015)

    Article  Google Scholar 

  3. T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2015)

    Article  Google Scholar 

  4. H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans B 41, 824 (2010)

    Article  Google Scholar 

  5. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R. 49, 1 (2005)

    Article  Google Scholar 

  6. H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141 (2009)

    Article  CAS  Google Scholar 

  7. L. Zhang, C. He, Y. Guo, J. Han, Y. Zhang, X. Wang, Microelectron. Reliab. 52, 559 (2012)

    Article  CAS  Google Scholar 

  8. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)

    Article  CAS  Google Scholar 

  9. K.S. Siow, J. Electron. Mater. 43, 947 (2014)

    Article  CAS  Google Scholar 

  10. T. Ishizaki, R. Watanabe, J. Mater Chem. 22, 25198 (2012)

    Article  CAS  Google Scholar 

  11. T. Ishizaki, T. Satoh, A. Kuno, A. Tane, M. Yanase, F. Osawa, Y. Yamada, Microelectron. Reliab. 53, 1543 (2013)

    Article  CAS  Google Scholar 

  12. T. Yamakawa, T. Takemoto, M. Shimoda., H. Nishikawa, K. Shiokawa, N. Terada, J. Electron. Mater. 42, 1260 (2013)

    Article  CAS  Google Scholar 

  13. Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita, Int. J. Adhes Adhes. 33, 50 (2012)

    Article  CAS  Google Scholar 

  14. J. Liu, H. Chen, H. Ji, M. Li, ACS Appl. Mater. Interfaces. 8, 33289 (2016)

    Article  CAS  Google Scholar 

  15. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, J. Mater. Process. Technol. 215, 299 (2015)

    Article  CAS  Google Scholar 

  16. Ph Buffat, J.P. Borel, Phys. Rev. A. 13, 2287 (1976)

    Article  CAS  Google Scholar 

  17. T. Ishizaki, K. Akedo, T. Satoh, R. Watanabe, J. Electron. Mater. 43, 774 (2014)

    Article  CAS  Google Scholar 

  18. T. Satoh, T. Ishizaki, K. Akedo, J. Electron. Mater. 46, 1279 (2017)

    Article  CAS  Google Scholar 

  19. T. Satoh, T. Ishizaki, M. Usui, Mater. Des. 124, 203 (2017)

    Article  CAS  Google Scholar 

  20. S. Tajima, T. Satoh, T. Ishizaki, M. Usui, J. Mater. Sci.: Mater. Electron. 28, 1764 (2017)

    Google Scholar 

  21. B. Predel, Phase equilibria, crystallographic and thermodynamic data of binary alloys B-Ba-C-Zr, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by O. Madelung, vol 5B (Springer, Berlin, 1992). http://materials.springer.com/bp/docs/978-3-540-46733-5. Accessed 14 July 2015

  22. P. Franke, D. Neuschütz, Binary systems. Part 3: Binary Systems from Cs-K to Mg-Zr Cu-Sn, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by P. Franke, D. Neuschütz, vol 19B3 (Springer, Berlin, 2005). http://materials.springer.com/lb/docs/sm_lbs_978-3-540-31688-6_17. Accessed 14 July 2015

  23. G.P. Vassilev, K.I. Lilova, J.-C. Gachonc, J. Alloy. Compd. 469, 264 (2009)

    Article  CAS  Google Scholar 

  24. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, C.R. Kao, Chem. Mater. 13, 1051 (2001)

    Article  CAS  Google Scholar 

  25. I. Karakaya, W.T. Thompson, J. Phase Equilibria. 14, 525 (1993)

    Article  CAS  Google Scholar 

  26. M.S. Lee, C. Chen, C.R. Kao, Chem. Mater. 11, 292 (1999)

    Article  CAS  Google Scholar 

  27. M.S. Lee, C.M. Liu, C.R. Kao, J. Electron. Mater. 28, 57 (1999)

    Article  CAS  Google Scholar 

  28. S.W. Chen, Y.W. Yen, J. Electron. Mater. 28, 1203 (1999)

    Article  CAS  Google Scholar 

  29. A. Hayashi, C.R. Cao, Y.A. Chang, Scr. Mater. 37, 393 (1997)

    Article  CAS  Google Scholar 

  30. A. Paul, C. Ghosh, W.J. Boettinger, Metall. Mater. Trans. A. 42A, 952 (2011)

    Article  Google Scholar 

  31. Y. Yuan, Y. Guan, D. Li, N. Moelans, J. Alloys Compd. 661, 282 (2016)

    Article  CAS  Google Scholar 

  32. S. Bader, W. Gust, H. Hiever, Acta Metall. Mater. 43, 329 (1995)

    CAS  Google Scholar 

  33. S.-W. Yoon, M.D. Glover, K. Shiozaki, IEEE Trans. Power Electron. 28, 2448 (2013)

    Article  Google Scholar 

  34. J. Shen, Y.C. Chan, S.Y. Liu, Acta Mater. 57, 5196 (2004)

    Article  Google Scholar 

  35. B. Predel, Phase equilibria, crystallographic and thermodynamic data of binary alloys Cr-Cs-Cu-Zr, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by O. Madelung, vol 5D (Springer, Berlin, 1994). http://materials.springer.com/lb/docs/sm_lbs_978-3-540-47417-3_1119. Accessed 25 Dec 2017

  36. B. Predel, Phase equilibria, crystallographic and thermodynamic data of binary alloys Cr-Cs-Cu-Zr, in Landolt-Börnstein - Group IV Physical Chemistry, ed. by O. Madelung, vol 5I (Springer, Berlin, 1998), http://materials.springer.com/lb/docs/sm_lbs_978-3-540-70692-2_2265. Accessed 25 Dec 2017

  37. M. Nakayama, M. Kajihara, Mater. Trans. 55, 1266 (2014)

    Article  CAS  Google Scholar 

  38. A. Wierzbicka-Miernik, J. Wojewoda-Budka, K. Miernik, L. Litynska-Dobrzynsk, N. Schell, J. Alloys Compd. 693, 1102 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Satoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, T., Ishizaki, T. & Usui, M. Effect of bismuth–tin alloy particle diameter on bonding strength of copper nanoparticles/bismuth–tin solder hybrid joints. J Mater Sci: Mater Electron 29, 7161–7176 (2018). https://doi.org/10.1007/s10854-018-8704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8704-1

Navigation