Skip to main content
Log in

Injectable hydrogels with two different rates of drug release based on pluronic/water system filled with poly(ε-caprolactone) microcapsules

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present paper regards the preparation and characterization of Pluronic F127 + F68/water/poly (ε-caprolactone) microcapsules (MCs) composite systems for tissue repair. The first part of the work relates to the production of poly(ε-caprolactone) (PCL) MCs via water-in-oil-in-water (W/O/W) double emulsion system combined with solvent evaporation method. The study of different process parameters in the final MCs characteristics and their drug release profile is herein reported. Different percentages of PCL, emulsion stabilizer, and volume proportions of the emulsion constituents have been tested, leading to considerable differences in the MCs size distributions. The selected MCs, containing an aqueous solution of methylene blue (MB) as a model drug, were then used to fill a Pluronic F127 + F68/water system leading to the final composite system (5 and 10 wt % MB loaded PCL MCs). The composite systems were characterised in the second part of the work in terms of its rheological behaviour and drug release performance. They were found to gellify at 30 °C, and present an extended drug release to a total of 18 days. The models that best define the release profiles were also studied, with the release of MB occurring mostly by Fick diffusion and polymer chain relaxation. Pluronic F127 + F68/water/poly (ε-caprolactone) MCs composite system is shown to be a promising injectable system, with two different drug release rates, for tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kan GM (2001) Controlled release oral dosage forms: some recent advances in matrix type drug delivery systems. J Med Sci 1:350–354

    Article  Google Scholar 

  2. Tomaro-Duchesneau C, Saha S, Malhotra M, Kahouli I, Prakash S (2013) Microencapsulation for the therapeutic delivery of drugs, live mammalian and bacterial cells, and other biopharmaceutics: current status and future directions. J Pharm. https://doi.org/10.1155/2013/103527

    Article  Google Scholar 

  3. Varde NK, Pack DW (2004) Microcapsules for controlled release drug delivery. Expert Opin Biol Ther 4:35–41

    Article  CAS  Google Scholar 

  4. Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang C-H (2018) Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 132:104–138

    Article  CAS  Google Scholar 

  5. Wang X, Wang Y, Wei K, Zhao N, Zhang S, Chen J (2009) Drug distribution within poly(ε-caprolactone) microcapsules and in vitro release. J Mater Process Technol 209:348–354

    Article  CAS  Google Scholar 

  6. Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RC, Guterres SS (2013) Poly(e-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv 10:623–638

    Article  CAS  Google Scholar 

  7. Iqbal M, Valour J-P, Fessi H, Elaissari A (2015) Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid Polym Sci 293:861–873

    Article  CAS  Google Scholar 

  8. Lamprecht A, Ubrich N, Pérez MH, Lehr C-M, Hoffman M, Maincent P (2000) Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm 196:177–182

    Article  CAS  Google Scholar 

  9. Hwang Y-M, Pan C-T, Lin Y-M, Zeng S-W, Yen C-K, Wang S-Y, Kuo S-W, Ju S-P, Liang S-S, Liu Z-H (2019) Preparation of biodegradable polycaprolactone microcarriers with doxorubicin hydrochloride by ultrasonic-assisted emulsification technology. Sens Mater 31:301–310

    CAS  Google Scholar 

  10. Imbrogno A, Dragosavac MM, Piacentini E, Vladisavljević GT, Holdich RG, Giorno L (2015) Polycaprolactone multicore-matrix particle for the simultaneous encapsulation of hydrophilic and hydrophobic compounds produced by membrane emulsification and solvent diffusion processes. Colloids Surf B Biointerfaces 135:116–125

    Article  CAS  Google Scholar 

  11. Yang Y-Y, Chung T-S, Ng N-P (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microcapsules containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22:231–241

    Article  CAS  Google Scholar 

  12. Seifriz W (1925) Studies in Emulsions III-V. J Phys Chem 29:738–749

    Article  Google Scholar 

  13. Cesari A, Loureiro MV, Vale M, Yslas EI, Dardanelli M, Marques AC (2020) Polycaprolactone microcapsules containing citric acid and naringin for plant growth and sustainable agriculture physico-chemical properties and release behaviour. Sci Total Environ 703:135548. https://doi.org/10.1016/j.scitotenv.2019.135548

    Article  CAS  Google Scholar 

  14. Loureiro MV, Vale M, Galhano Lopes R, Matos S, Bordado JC, Pinho I, Marques AC (2020) Microencapsulation of isocyanate in biodegradable poly(ε-caprolactone) capsules and application in monocomponent green adhesives. ACS Appl Polym Mater 2(11):4425–4438. https://doi.org/10.1021/acsapm.0c00535

    Article  CAS  Google Scholar 

  15. Ibraheem D, Iqbal M, Agusti G, Fessi H, Elaissari A (2014) Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process. Colloids Surf A Physicochem Eng Asp 445:79–91. https://doi.org/10.1016/j.colsurfa.2014.01.012

    Article  CAS  Google Scholar 

  16. Caramella C, Conti B, Modena T, Ferrari F, Bonferoni MC, Genta I, Rossi S, Torre ML, Sandri G, Sorrenti M, Catenacci L, Dorati R, Tripodo G (2016) Controlled delivery systems for tissue repair and regeneration. J Drug Deliv Sci Technol 32:206–228

    Article  CAS  Google Scholar 

  17. Wang P, Johnston TP (1991) Kinetics of sol-to-gel transition for poloxamer polyols. J Appl Polym Sci 43:283–292

    Article  CAS  Google Scholar 

  18. Zhang Y, Song W, Geng J, Chitgupi U, Unsal H, Federizon J, Rzayev J, Sukumaran DK, Alexandridis P, Lovell JF (2016) Therapeutic surfactant-stripped frozen micelles. Nat. Commun. 7(1):1–9

    Google Scholar 

  19. Zhang Y, Wang D, Goel S, Sun B, Chitgupi U, Geng J, Sun H, Barnhart TE, Cai W, Xia J (2016) Surfactant-stripped frozen pheophytin micelles for multimodal gut imaging. Adv Mater 28:8524–8530

    Article  CAS  Google Scholar 

  20. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  21. Peppas NA, Bures P, Leobandung W, Ichikawa H (2007) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  Google Scholar 

  22. Gnavi S, Di Blasio L, Tonda-Turo C, Macardi A, Primo L, Ciardelli G, Gambarotta G, Geuna S, Perroteau I (2014) Gelatin based hydrogels as delivery systems for vascular endothelial growth factor release in peripheral nerve tissue engineering. J Tissue Eng Regen Med 11:459–470

    Article  Google Scholar 

  23. Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G (2014) Development and characterisation of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channel. J Tissue Eng Regen Med 11(197):208

    Google Scholar 

  24. Tan H, Marra KG (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767

    Article  CAS  Google Scholar 

  25. Tipton AJ (2000) Dunn, In situ gelling systems. In: Senior J, Radomsky ML (eds) Sustained-release injectable products, 1st edn. CRC Press, Boca Raton, FL, USA, pp 241–278

    Chapter  Google Scholar 

  26. Hollister LE (1989) Site-specific drug delivery to CNS: Old and new. Neurobiol Aging 10:631

    Article  CAS  Google Scholar 

  27. Alexandridis P, Hatton TA (1995) Poly (ethylene oxide)- poly (propylene oxide)- poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A 96:1–46

    Article  CAS  Google Scholar 

  28. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27:4145–4159

    Article  CAS  Google Scholar 

  29. Zhang M, Djabourov M, Bourgaux C, Bouchemal K (2013) Nanostructured fluids from pluronic® mixtures. Int J Pharm 454:599–610

    Article  CAS  Google Scholar 

  30. Al Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, ManLau W, Khutoryanskiy VV (2016) In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm 502:70–79

    Article  CAS  Google Scholar 

  31. Cidade MT, Ramos DJ, Santos J, Carrelo H, Calero N, Borges JP (2019) Injectable hydrogels based on pluronic/water systems filled with alginate microparticles for biomedical applications. Materials 12:1083

    Article  Google Scholar 

  32. Weidenauer U, Bodmer D, Kissel T (2003) Microencapsulation of hydrophilic drug substances using biodegradable polyesters. Part I: evaluation of different techniques for the encapsulation of pamidronate disodium salt. J Microencapsul. 20:509–524

    Article  CAS  Google Scholar 

  33. Zhou J, Fang T, Wen J, Shao Z (2011) Silk coating on poly(ε-caprolactone) microcapsules for the delayed release of vancomycin. J Microencapsul 28:99–107

    Article  CAS  Google Scholar 

  34. Yu X, Wang N, Lv S (2016) Crystal and multiple melting behaviors of PCL lamellae in ultrathin films. J Cryst Growth 438:11–18

    Article  CAS  Google Scholar 

  35. Smith B (2017) The carbonyl group, part I: introduction. Spectroscopy 32:31–36

    CAS  Google Scholar 

  36. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387

    Article  CAS  Google Scholar 

  37. Ovchinniko OV, Evtukhova AV, Kondratenko TS, Smirnov MS, Khokhlov VY, Erina OV (2016) Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib Spectrosc 86:181–189

    Article  Google Scholar 

  38. Xia Y, Yao Q, Zhang W, Zhang Y, Zhao M (2015) Comparative adsorption of methylene blue by magnetic baker’s yeast and EDTAD-modified magnetic baker’s yeast: equilibrium and kinetic study. Arab J Chem 12:2448–2456

    Article  Google Scholar 

  39. Batenburg LF, Fischer H (2001) PlanoColors® a combination of organic dyes and layered silicates with nanometer dimensions. e-Polymers

  40. Lu X, Katz JS, Schmitt AK, Moore JS (2018) A robust oil-in-oil emulsion for the nonaqueous encapsulation of hydrophilic payloads. J Am Chem Soc 140:3619–3625

    Article  CAS  Google Scholar 

  41. Calero N, Santos J, Echevarría C, Muñoz J, Cidade MT (2018) Time-dependent behavior in analyte-, temperature-, and shear-sensitive pluronic pe9400/water systems. Colloid Polym Sci 296:1515–1522

    Article  CAS  Google Scholar 

  42. Lau BK, Wang Q, Sun W, Li L (2004) Micellization to gelation of a triblock copolymer in water: thermoreversibility and scaling. J Polym Sci B 42:2014–2025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Fundacão para a Ciência e a Tecnologia (FCT) through the support of CERENA (Strategic Project FCT-UIDB/04028/2020) and Cenimat/I3N (Reference UID/CTM/50025/2019) and the FCT Grant SFRH/BD/140700/2018 (M.V.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Cidade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Lisa White.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, B., Carrêlo, H., Loureiro, M.V. et al. Injectable hydrogels with two different rates of drug release based on pluronic/water system filled with poly(ε-caprolactone) microcapsules. J Mater Sci 56, 13416–13428 (2021). https://doi.org/10.1007/s10853-021-06156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06156-x

Navigation