Skip to main content
Log in

Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rational design on the microstructure of microwave-absorbing materials is paving the way for upgrading their performances in electromagnetic pollution prevention. In this study, a Fe3O4/C composite with unique yolk–shell microstructure (YS-Fe3O4@C) is successfully fabricated by a silica-assisted route. It is found that carbon shells in this composite can make up the shortages of Fe3O4 microspheres in dielectric loss ability, while they may more or less attenuate the intrinsically magnetic loss of Fe3O4 microspheres. The microwave absorption properties of YS-Fe3O4@C are evaluated in the frequency range of 2.0–18.0 GHz in terms of the measured complex permittivity and complex permeability. The results demonstrate that YS-Fe3O4@C can exhibit much better performance than bare Fe3O4 microspheres and individual carbon materials, as well as core–shell Fe3O4/C composite (CS-Fe3O4@C), where strong reflection loss and wide response bandwidth can be achieved simultaneously. With an absorber thickness of 2.0 mm, the maximum reflection loss is −73.1 dB at 14.6 GHz and a bandwidth over −10.0 dB is in the range of 12.3–18.0 GHz. It can be proved that the unique yolk–shell microstructure is helpful to reinforce the dielectric loss ability and create an optimized matching of characteristic impedance in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang XJ, Li S, Wang SW, Yin ZJ, Zhu JQ, Guo AP, Wang GS, Yin PG, Guo L (2016) Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband. J Phys Chem C 120:22019–22027

    Article  Google Scholar 

  2. Zhou C, Geng S, Xu XW, Wang TH, Zhang LQ, Tian XJ, Yang F, Yang HT, Li YF (2016) Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108:234–241

    Article  Google Scholar 

  3. Micheli D, Vricella A, Pastore R, Marchetti M (2014) Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77:756–774

    Article  Google Scholar 

  4. Zhu JH, Wei SY, Haldolaarachchige N, Young DP, Guo ZH (2011) Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell fe-silica nanoparticles. J Phys Chem C 115:15304–15310

    Article  Google Scholar 

  5. Ding D, Wang Y, Li XD, Qiang R, Xu P, Chu WL, Han XJ, Du YC (2017) Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111:722–732

    Article  Google Scholar 

  6. Zhao B, Shao G, Fan B, Zhao W, Xie Y, Zhang R (2015) Facile preparation and enhanced microwave absorption properties of core–shell composite spheres composited of Ni cores and TiO2 shells. Phys Chem Chem Phys 17:8802–8810

    Article  Google Scholar 

  7. Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, Cao MS (2016) Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100:109–117

    Article  Google Scholar 

  8. Zhang Y, Huang Y, Zhang TF, Chang HC, Xiao PS, Chen HH, Huang ZY, Chen YS (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27:2049–2053

    Article  Google Scholar 

  9. Liu Y, Cui TT, Wu T, Li Y, Tong GX (2016) Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 27:1–12

    Google Scholar 

  10. Jia K, Zhao R, Zhong JC, Liu XB (2010) Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres. J Magn Magn Mater 322:2167–2171

    Article  Google Scholar 

  11. Ni SB, Lin SM, Pan QT, Yang F, Huang K, He DY (2009) Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J Phys D Appl Phys 42:1–5

    Google Scholar 

  12. Sun GB, Dong BX, Cao MH, Wei BQ, Hu CW (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23:1587–1593

    Article  Google Scholar 

  13. Wang FL, Liu JR, Kong J, Zhang ZJ, Wang XZ, Itoh M, Machida K (2011) Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J Mater Chem 21:4314–4320

    Article  Google Scholar 

  14. Hu CG, Mou ZY, Lu GW, Chen N, Dong ZL, Hu MJ, Qu LT (2013) 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 15:13038–13043

    Article  Google Scholar 

  15. Liu JW, Che RC, Chen HJ, Zhang F, Xia F, Wu QS, Wang M (2012) Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8:1214–1221

    Article  Google Scholar 

  16. Zhu CL, Zhang ML, Qiao YJ, Xiao G, Zhang F, Chen YJ (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis, magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114:16229–16235

    Article  Google Scholar 

  17. Liu JW, Xu JJ, Liu ZW, Liu XL, Che RC (2014) Hierarchical magnetic core-shell nanostructures for microwave absorption: synthesis, microstructure and property studies. Sci China Chem 57:3–12

    Article  Google Scholar 

  18. Wang L, Huang Y, Li C, Chen J, Sun X (2015) Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance. Compos Sci Technol 108:1–8

    Article  Google Scholar 

  19. Zhu YF, Ni QQ, Fu YQ, Natsuki T (2013) Synthesis and microwave absorption properties of electromagnetic functionalized Fe3O4-polyaniline hollow sphere nanocomposites produced by electrostatic self-assembly. J Nanopart Res 15:1–11

    Google Scholar 

  20. Li Y, Chen D, Liu X, Zhou Y, Zhuang Q, Cai R, Zhang K (2014) Preparation of the PBOPy/PPy/Fe3O4 composites with high microwave absorption performance and thermal stability. Compos Sci Technol 100:212–219

    Article  Google Scholar 

  21. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2009) Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym Adv Technol 20:550–557

    Article  Google Scholar 

  22. Lu MM, Cao MS, Chen YH, Cao WQ, Liu J, Shi HL, Zhang DQ, Wang WZ, Yuan J (2015) Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl Mater Inter 7:19408–19415

    Article  Google Scholar 

  23. Ni SB, Wang XH, Zhou G, Yang F, Wang JM, He DY (2010) Designed synthesis of wide range microwave absorption Fe3O4-carbon sphere composite. J Alloys Compd 489:252–256

    Article  Google Scholar 

  24. Yan SJ, Wang LN, Wang TH, Zhang LQ, Li YF, Dai SL (2016) Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres. Appl Phys A-Mater 122:1–6

    Article  Google Scholar 

  25. Liu Y, Li YN, Jiang KD, Tong GX, Lv TX, Wu WH (2016) Controllable synthesis of elliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption. J Mater Chem C 4:7316–7323

    Article  Google Scholar 

  26. Wu T, Liu Y, Zeng X, Cui TT, Zhao YT, Li YN, Tong GX (2016) Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Inter 8:7370–7380

    Article  Google Scholar 

  27. Zhao B, Guo X, Zhao W, Deng J, Shao G, Fan B, Bai Z, Zhang R (2016) Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Inter 8:28917–28925

    Article  Google Scholar 

  28. Liu XF, Cui XR, Chen YX, Zhang XJ, Yu RH, Wang GS, Ma H (2015) Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 95:870–878

    Article  Google Scholar 

  29. Khani O, Shoushtari MZ, Jazirehpour M, Shams MH (2016) Effect of carbon shell thickness on the microwave absorption of magnetite-carbon core-shell nanoparticles. Ceram Int 42:14548–14556

    Article  Google Scholar 

  30. Yuan KP, Che RC, Cao Q, Sun ZK, Yue Q, Deng YH (2015) Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. ACS Appl Mater Inter 7:5312–5319

    Article  Google Scholar 

  31. Qi XS, Hu Q, Xu JL, Xie R, Bai ZC, Jiang Y, Qin SJ, Zhong W, Du YW (2016) Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids. Mat Sci Eng B-Solid 211:53–60

    Article  Google Scholar 

  32. Li WX, Lv BL, Wang LC, Li GM, Xu Y (2014) Fabrication of Fe3O4@C core-shell nanotubes and their application as a lightweight microwave absorbent. Rsc Adv 4:55738–55744

    Article  Google Scholar 

  33. Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, Xu P (2014) Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Inter 6:12997–13006

    Article  Google Scholar 

  34. Liu JW, Cheng J, Che RC, Xu JJ, Liu MM, Liu ZW (2013) Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J Phys Chem C 117:489–495

    Article  Google Scholar 

  35. Liu JW, Xu JJ, Che RC, Chen HJ, Liu MM, Liu ZW (2013) Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem-Eur J 19:6746–6752

    Article  Google Scholar 

  36. Liu J, Cheng J, Che R, Xu J, Liu M, Liu Z (2013) Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl Mater Inter 5:2503–2509

    Article  Google Scholar 

  37. Liu QH, Cao Q, Bi H, Liang CY, Yuan KP, She W, Yang YJ, Che RC (2016) CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 28:486–490

    Article  Google Scholar 

  38. Qiang R, Du YC, Wang Y, Wang N, Tian CH, Ma J, Xu P, Han XJ (2016) Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98:599–606

    Article  Google Scholar 

  39. Wan L, Zhang JF, Chen YQ, Wang HR, Hu WB, Liu L, Deng YD (2015) Preparation, characterization and microwave absorbing properties of nano-sized yolk-in-shell Ni-P nanospheres. J Phys D Appl Phys 48:1–9

    Article  Google Scholar 

  40. Hao LY, Zhu CL, Chen CN, Kang P, Hu Y, Fan WC, Chen ZY (2003) Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synth Met 139:391–396

    Article  Google Scholar 

  41. Hao LY, Zhu CL, Jiang WQ, Chen CN, Hu Y, Chen ZY (2004) Sandwich Fe2O3@SiO2@PPy ellipsoidal spheres and four types of hollow capsules by hematite olivary particles. J Mater Chem 14:2929–2934

    Article  Google Scholar 

  42. Zhao H, Du Y, Kang L, Xu P, Du L, Sun Z, Han X (2013) Precursor-directed synthesis of quasi-spherical barium ferrite particles with good dispersion and magnetic properties. CrystEngComm 15:808–815

    Article  Google Scholar 

  43. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  44. Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116:13403–13412

    Article  Google Scholar 

  45. Lv RT, Cao AY, Kang FY, Wang WX, Wei JQ, Gu JL, Wang KL, Wu DH (2007) Single-crystalline permalloy nanowires in carbon nanotubes: enhanced encapsulation and magnetization. J Phys Chem C 111:11475–11479

    Article  Google Scholar 

  46. Park MJ, Kim SS (2016) Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra. Electron Mater Lett 12:610–614

    Article  Google Scholar 

  47. Alam RS, Moradi M, Nikmanesh H (2016) Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0.5Co0.5TiFe10O19/MWCNTs nanocomposites. Mater Res Bull 73:261–267

    Article  Google Scholar 

  48. Wen B, Cao MS, Hou ZL, Song WL, Zhang L, Lu MM, Jin HB, Fang XY, Wang WZ, Yuan J (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124–139

    Article  Google Scholar 

  49. Zhao B, Zhao WY, Shao G, Fan BB, Zhang R (2015) Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Inter 7:12951–12960

    Article  Google Scholar 

  50. He S, Lu C, Wang GS, Wang JW, Guo HY, Guo L (2014) Synthesis and growth mechanism of white-fungus-like nickel sulfide microspheres, and their application in polymer composites with enhanced microwave-absorption properties. ChemPlusChem 79:569–576

    Article  Google Scholar 

  51. Hornyak GL, Patrissi CJ, Martin CR (1997) Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J Phys Chem B 101:1548–1555

    Article  Google Scholar 

  52. Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y, Gao P, Zhu CL, Cao MS, Jin HB (2011) Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 115:13603–13608

    Article  Google Scholar 

  53. Meng FB, Wei W, Chen XN, Xu XL, Jiang M, Jun L, Wang Y, Zhou ZW (2016) Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys Chem Chem Phys 18:2510–2516

    Article  Google Scholar 

  54. Fu LS, Jiang JT, Xu CY, Gong YX, Zhen L (2013) Synthesis and electromagnetic properties of Fe/SiO2 yolk/shell nanospheres with improved oxidation resistance. Micro Nano Lett 8:349–352

    Article  Google Scholar 

  55. Meng Y, Liang CY, Liu MG, Liu XL, Yuan KP, Cao H, Che RC (2014) Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J Mater Chem C 2:7275–7283

    Article  Google Scholar 

  56. Liu ZF, Bai G, Huang Y, Li FF, Ma YF, Guo TY, He XB, Lin X, Gao HJ, Chen YS (2007) Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J Phys Chem C 111:13696–13700

    Article  Google Scholar 

  57. Ma Z, Cao CT, Liu QF, Wang JB (2012) A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin Phys Lett 29:038401–038404

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the financial support from Natural Science Foundation of China (21676065, 21371039, and 21571043), and the Natural Science Foundation of Heilongjiang Province (B201405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunchen Du or Xijiang Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Du, Y., Cui, C. et al. Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. J Mater Sci 52, 6349–6361 (2017). https://doi.org/10.1007/s10853-017-0866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0866-3

Keywords

Navigation