Skip to main content
Log in

Agricultural intensification may create an attractive sink for Dolichopodidae, a ubiquitous but understudied predatory fly family

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Long-legged flies (Dolichopodidae) are common within U.S. agroecosystems, but rarely the focus of ecological study. Given a documented sensitivity to environmental changes, at least in natural systems like grasslands and reed marshes, we aimed to determine how local management and landscape-scale factors might influence the community assemblage of Dolichopodidae found within vegetable farms. During the summer of 2013 and 2014, pan trapping was used to sample the long-legged fly community present in produce farms across the northeast region of the U.S. state of Ohio; farms were selected to represent gradients of landscape complexity and management intensity. Communities found within sweet corn, summer squash, and unmanaged old fields were surveyed. Over 3000 flies representing 11 genera and 33 species were collected. This adds an additional 4 genera and 19 species as occurring within the study region. In nearly all cases, we found that Dolichopodidae abundance and the diversity of genera collected was greater within vegetable crops versus set-aside habitats on farms. Within croplands, the value of a habitat patch for Dolichopodidae was highly dependent on agricultural intensification; fields with a high frequency of pesticide use and conventional tillage practices supported reduced abundance and diversity. Landscapes dominated by agricultural production were also found to reduce the species pool of Dolichopodidae found within sampled habitats. Our findings provide an important baseline of Dolichopodidae species and their relative abundance within regional agricultural landscapes. They also highlight the potential that highly attractive but intensively managed croplands may act as ecological traps, with consequences for Dolichopodidae conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addinsoft (2015) XLSTAT V. 2015.1.01. Data analysis and statistics software for Microsoft Excel

  • Batáry P, Báldi A, Sárospataki sM, Kohler F, Verhulst J, Knop E, Herzog F, Kleijn D (2010) Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agric Ecosyst Environ 136:35–39

    Article  Google Scholar 

  • Batáry P, Dicks LV, Kleijn D, Sutherland WJ (2015) The role of agri-environment schemes in conservation and environmental management. Conserv Biol 29:1006–1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Battin J (2004) When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491

    Article  Google Scholar 

  • Beaver RA (1966) The biology and immature stages of two species of Medetera (Diptera: Dolichopodidae) associated with the bark beetle Scolytus scolytus (F.). Proc R Entomol Soc Lond A 41:145–154

    Google Scholar 

  • Bennett AB, Gratton C (2012) Local and landscape scale variables impact parasitoid assemblages across an urbanization gradient. Landsc Urban Plan 104:26–33

    Article  Google Scholar 

  • Best LB (1986) Conservation tillage: ecological traps for nesting birds? Wildl Soc Bull 14:308–317

    Google Scholar 

  • Bickel DJ (2009) Dolichopodidae (long-legged flies). In: Brown B, Borkent MA, Cumming BV, Wood A, Woodley JM, D.M., & Zumbado NE (eds) Manual of central American diptera, vol 1. NRC Research Press, Ottawa, pp 671–694

    Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Bortolotto OC, Menezes AD, Hoshino AT (2016) Abundance of natural enemies of wheat aphids at different distances from the edge of the forest. Pesquisa Agropecuaria Brasileira 51:187–191

    Article  Google Scholar 

  • Brainard DC, Bryant A, Noyes DC, Haramoto ER, Szendrei Z (2016) Evaluating pest-regulating services under conservation agriculture: a case study in snap beans. Agric Ecosyst Environ 235:142–154

    Article  Google Scholar 

  • Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land-use trends in the conterminous United States, 1950–2000. Ecol Appl 15:1851–1863

    Article  Google Scholar 

  • Carrascal LM, Galván I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690

    Article  Google Scholar 

  • Chynoweth RJ, Marris JWM, Armstrong KF, Chomic A, Linton J, Chapman RB (2013) Predation by Ostenia robusta on Costelytra zealandica pupae. New Zealand Plant Protection 66:157–161

    Google Scholar 

  • Cicero JM, Adair MM, Adair RC, Hunter WB, Avery PB, Mizel RF (2017) Predatory behavior of long-legged flies (Diptera: Dolichopodidae) and their potential negative effects on the parasitoid biological control agent of the Asian citrius psyllid (Hemiptera: Liviidae). Fla Entomolo 100:485–488

    Article  Google Scholar 

  • Clark S, Szlávecz K, Cavigelli MA, Purrington F (2006) Ground beetle (Coleoptera: Carabidae) assemblages in organic, no-till, and chisel-till cropping systems in Maryland. Environ Entomol 35:1304–1312

    Article  Google Scholar 

  • Delibes M, Ferreras P, Gaona P (2001) Attractive sinks, or how individual behavioural decisions determine source-sink dynamics. Ecol Lett 4:401–403

    Article  Google Scholar 

  • Ekroos J, Olsson O, Rundlöf M, Wätzold F, Smith HG (2014) Optimizing agri-environment schemes for biodiversity, ecosystem services or both? Biol Cons 172:65–71

    Article  Google Scholar 

  • Falk SJ, Crossley R (2005) A review of the scarce and threatened flies of Great Britain. Part 3: Empidoidea. Species Status, 3, 1-134. Joint Nature Conservation Committee, Peterborough

  • Free JH, Williams IH, Longden PC, Johnson MG (1975) Insect pollination of sugar-beet (Beta vulgaris) seed crops. Ann Appl Biol 81:127–134

    Article  Google Scholar 

  • Gardiner MM, Tuell JK, Isaacs R, Gibbs J, Asher JS, Landis DA (2010) Implications of three biofuel crops for beneficial arthropods in agricultural landscapes. Bioenergy Res 3:6–19

    Article  Google Scholar 

  • Gardiner MM, Prajzner SP, Burkman CE, Albro S, Grewal PS (2014) Vacant land conversion to community gardens: influences on generalist arthropod predators and biocontrol services in urban greenspaces. Urban Ecosyst 17:101–122

    Article  Google Scholar 

  • Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR, Isaacs R, Kuhlmann M, Kleijn D, Klein AM, Kremen C, Morandin L, Scheper J, Winfree R (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12:439–447

    Article  Google Scholar 

  • Gelbič I, Olejníček J (2011) Ecology of Dolichopodidae (Diptera) in a wetland habitat and their potential role as bioindicators. Open Life Sci 6:118–129

    Google Scholar 

  • Gill KA, O’Neal ME (2015) Survey of soybean insect pollinators: community identification and sampling method analysis. Environ Entomol 44:488–498

    Article  CAS  PubMed  Google Scholar 

  • Guerrero I, Morales MB, Onate JJ, Geiger F, Berendse F, de Snoo G, Eggers S, Pärt T, Bengtsson J, Clement LW, Weisser WW, Olszewski A, Ceryingier P, Hawro V, Liira J, Aavik T, Fischer C, Flohre A, Thies C, Tscharntke T (2012) Response of ground-nesting farmland birds to agricultural intensification across Europe: landscape and field level management factors. Biol Cons 152:74–80

    Article  Google Scholar 

  • Hajkowicz S (2009) The evolution of Australia’s natural resource management programs: towards improved targeting and evaluation of investments. Land Use Policy 26:471–478

    Article  Google Scholar 

  • Halada L, Evans D, Romao C, Petersen J-E (2011) Which habitats of European importance depend on agricultural practices? Biodivers Conserv 20:2365–2378

    Article  Google Scholar 

  • Haussaman A (1996) The effects of weed strip-management on pests and beneficial arthropods in winter wheat fields. J Plant Dis Protect 103:70–81

    Google Scholar 

  • Inclán DJ, Cerretti P, Gabriel D, Benton TG, Salt SM, Kunin WE, Gillepie MAK, Marini L (2015) Organic farming enhances parasitoid diversity at the local and landscape scales. J Appl Ecol 52:1102–1109

    Article  Google Scholar 

  • Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D (2009) Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ 7:196–203

    Article  Google Scholar 

  • Jonsson M, Raartinen R, Straub CS (2017) Relationships between natural enemy diversity and biological control. Curr Opin Insect Sci 20:1–6

    Article  PubMed  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969

    Article  Google Scholar 

  • Kleijn D, Rundlöf M, Scheper J, Smith HG, Tscharntke T (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481

    Article  PubMed  Google Scholar 

  • Kovach J, Petzoldt C, Degni J, Tette J (1992) A method to measure the environmental impact of pesticides. NY Food Life Sci Bull 139:1–8

    Google Scholar 

  • Krauss J, Gallenberger I, Steffan-Dewenter I (2011) Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLoS ONE 6:e19502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert DM, Sullivan P, Claassen R, Foreman L (2007) Profiles of US farm households adopting conservation-compatible practices. Land Use Policy 24:72–88

    Article  Google Scholar 

  • Letourneau DK, Goldstein B (2001) Pest damage and arthropod community structure in organic vs. conventional tomato production in California. J Appl Ecol 38:557–570

    Article  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Article  Google Scholar 

  • Lundgren JG, López-Lavalle LAB, Parsa S, Wyckhuys KAG (2014) Molecular determination of the predator community of a cassava whitefly in Colombia: pest-specific primer development and field validation. J Pest Sci 87:125–131

    Article  Google Scholar 

  • Motta Miranda MM, Picanco M, Matoli AL, Pallni Filho A (1998) Distribution in the plant and biological control of aphids (Homoptera, Aphididae) in tomato. Rev Brasileira Entomol 42:13–16

    Google Scholar 

  • Muratet A, Fontaine B (2015) Contrasting impacts of pesticides on butterflies and bumblebees in private gardens in France. Biol Cons 182:148–154

    Article  Google Scholar 

  • Ngo HT, Mojica AC, Packer L (2011) Coffee plant—pollinator interactions: a review. Can J Zool 89:647–660

    Article  Google Scholar 

  • Pape T, Blagoderov V, Mostovski MB (2011) Order DIPTERA Linnaeus. Anim Biodivers 3148(237):222–229

    Google Scholar 

  • Pollet M (1992a) Impact of environmental variables on the occurrence of dolichopodid flies in marshland habitats in Belgium (Diptera: Dolichopodidae). J Nat Hist 26:621–636

    Article  Google Scholar 

  • Pollet M (1992b) Reedmarshes: a poorly appreciated habitat for Dolichopodidae. Dipter Digest 12:23–26

    Google Scholar 

  • Pollet M (2001) Dolichopodid biodiversity and site quality assessment of reed marshes and grasslands in Belgium (Diptera: Dolichopodidae). J Insect Conserv 5:99–116

    Article  Google Scholar 

  • Pollet M (2009) Diptera as ecological indicators of habitat and habitat change. In: Pape R, Bickel T, Meier D (eds) Diptera diversity: status, challenges and tools, pp. 302–322. Leiden, Boston

    Chapter  Google Scholar 

  • Pollet M, Grootaert P (1994) Optimizing the water trap technique to collect Empidoidea (Diptera). Studia Dipterologica 1:33–48

    Google Scholar 

  • Pollet M, Brooks SE, Cumming JM (2004) Catalog of the Dolichopodidae (Diptera) of America North of Mexico. Bull Am Mus Nat Hist 283:1–114

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann Pl, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Quinn NF, Brainard D, Szendrei Z (2016) The effect of conservation tillage and cover crop residue on beneficial arthropods and weed seed predation in acorn squash. Environ Entomol 45:1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Raj H, Mattu V, Thakur M (2012) Pollinator diversity and relative abundance of insect visitors on apple crop in Shimla Hills of Western Himalaya, India. Int J Sci Nat 3:507–513

    Google Scholar 

  • Rathman RJ, Brunner JF (1988) Abundance and composition of predators on young apple Malus domestica Borkhausen within sagebrush and riparian species pools in North Central Washington USA. Melanderia 46:65–82

    Google Scholar 

  • Regan K, Ordosch D, Glover KD, Tilmon KJ, Szczepaniec A (2017) Effects of a pyrethroid and two neonicotinoid insecticides on population dynamics of key pests of soybean and abundance of their natural enemies. Crop Prot 98:24–32

    Article  CAS  Google Scholar 

  • Rivers A, Barbercheck M, Govaerts B, Verhulst N (2016) Conservation agriculture affects arthropod community composition in a rainfed maize-wheat system in central Mexico. Appl Soil Ecol 100:81–90

    Article  Google Scholar 

  • Robertson BA, Rehage JS, Sih A (2013) Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28:552–560

    Article  PubMed  Google Scholar 

  • Robinson HE (1964) A synopsis of the Dolichopodidae (Diptera) of the southeastern United States and adjacent regions. Misc Publ Entomol Soc Am 4:103–192

    Google Scholar 

  • Robinson HE, Vockeroth JR (1981) Dolichopodidae. Manual of Nearctic Diptera. (ed. by McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM). Agric Can Monogr 27:625–639

    Google Scholar 

  • Rotem G, Ziv Y, Giladi I, Bouskila A (2013) Wheat fields as an ecological trap for reptiles in a semiarid agroecosystem. Biol Cons 167:349–353

    Article  Google Scholar 

  • Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Wiesser WW, Winqvist C, Woltz M, Bommarco R (2016) Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ 221:198–204

    Article  Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480

    Article  Google Scholar 

  • Steinborn VH, Meyer H (1994) Influence of “biological” and “conventional” (intensive) farming on the predatory arthropod fauna in agroecosystems of Schleswig-Holstein (Araneida, Coleoptera: Carabidae, Diptera: Dolichopodidae, Empididae, Hybotidae, Microphoridae). Faunistisch-Oekologische Mitteilungen 6:408–438

    Google Scholar 

  • Stoate C, Baldi A, Peja P, Boatman ND, Herzon I, van Doom A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46

    Article  CAS  Google Scholar 

  • Tamburini G, De Simone S, Sigura M, Boscutti F, Marini L (2016a) Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. Proc R Soc Lond B 283:20161369

    Article  CAS  Google Scholar 

  • Tamburini G, Pevere Il, FN, De Simone S, Sigura M, Boscutti F, Marini L (2016b) Conservation tillage reduces the negative impact of urbanisation on carabid communities. Insect Conserv Divers 9:438–445

    Article  Google Scholar 

  • Tamburini G, De Simone S, Sigura M, Boscutti F, Marini L (2016c) Conservation tillage mitigates the negative effect of landscape simplification on biological control. J Appl Ecol 53:233–241

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Ulrich H (2004) Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. Stud Dipterol 11:360–403

    Google Scholar 

  • van Buskirk J, Willi Y (2004) Enhancement of farmland biodiversity within set-aside land. Conserv Biol 18:987–994

    Article  Google Scholar 

  • Werling BP, Meehan TD, Gratton C, Landis DA (2011) Influence of habitat and landscape perenniality on insect natural enemies in three candidate biofuel crops. Biol Control 59:304–312

    Article  Google Scholar 

  • Wheelock MJ, Rey KP, O’Neal ME (2016) Defining the insect pollinator community found in Iowa corn and soybean fields: Implications for pollinator conservation. Environ Entomol 45:1099–1106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you to the Gardiner Laboratory for assistance with field collections. Funding supported by the Ohio Agricultural Research and Development Center SEEDS grant program. We greatly appreciate the collecting advice and taxonomic keys provided by Scott Brooks, Marc Pollet, and Dan Bickel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Gardiner.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kautz, A.R., Gardiner, M.M. Agricultural intensification may create an attractive sink for Dolichopodidae, a ubiquitous but understudied predatory fly family. J Insect Conserv 23, 453–465 (2019). https://doi.org/10.1007/s10841-018-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-018-0116-2

Keywords

Navigation