Skip to main content
Log in

Analytical evaluation of the charge carrier density of organic materials with a Gaussian density of states revisited

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An analytical solution for the calculation of the charge carrier density of organic materials with a Gaussian distribution for the density of states is presented and builds upon the ideas presented by Mehmetoğlu (J Comput Electron 13:960–964, 2014) and Paasch et al. (J Appl Phys 107:104501-1–104501-4, 2010). The integral of interest is called the Gauss–Fermi integral and can be viewed as a particular type of integral in a family of the more general Fermi–Dirac-type integrals. The form of the Gauss–Fermi integral will be defined as

$$\begin{aligned} G\left( \alpha ,\beta ,\xi \right) =\mathop {\displaystyle \int }\limits _{-\infty }^{\infty }\frac{ e^{-\alpha \left( x-\beta \right) ^{2}}}{1+e^{x-\xi }}\hbox {d}x\text {,} \end{aligned}$$

where \(G\left( \alpha ,\beta ,\xi \right) \) is a dimensionless function. This article illustrates a technique developed by Selvaggi et al. [3] to derive a mathematical formula for a complete range of parameters \(\alpha \), \(\beta \), and \(\xi \) valid \(\forall \) \(\alpha \) \( \varepsilon \) \( {\mathbb {R}} \ge 0\), \(\forall \) \(\beta \) \(\varepsilon \) \( {\mathbb {R}} \), and \(\forall \) \(\xi \) \(\varepsilon \) \( {\mathbb {R}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mehmetoğlu, T.: Analytical evaluation of charge carrier density of organic materials with Gauss density of states. J. Comput. Electron. 13, 960–964 (2014)

    Article  Google Scholar 

  2. Paasch, G., Scheinert, S.: Charge carrier density of organics with Gaussian density of states: analytical approximation for the Gauss–Fermi integral. J. Appl. Phys. 107, 104501-1–104501-4 (2010)

  3. Selvaggi, J.A., Selvaggi, J.P.: The analytical evaluation of the half-order Fermi–Dirac integrals. Open Math. J. 5, 1–7 (2012)

    Article  MathSciNet  Google Scholar 

  4. Muccini, M.: A bright future for organic field-effect transistors. Nat. Mat. 5, 605–613 (2006)

    Article  Google Scholar 

  5. Malachowski, M.J., Żmija, J.: Organic field-effect transistors. Opto Electron. Rev. 18(2), 121–136 (2010)

    Article  Google Scholar 

  6. Drury, C.J., Mutsaers, C.M.J., Hart, C.M., Matters, M., de Leeuw, D.M.: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108–110 (1998)

    Article  Google Scholar 

  7. Borsenberger, P.M., Weiss, D.S.: Organic Photoreceptors for Xerography. Marcel Dekker, New York (1998)

    Google Scholar 

  8. Buckley, A.: Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. Woodhead Publishing Limited, Oxford (2013)

    Book  Google Scholar 

  9. Brabec, C.J., Sariciftci, N.S., Hummelen, J.C.: Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001)

    Article  Google Scholar 

  10. Bassler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175, 15–56 (1993)

    Article  Google Scholar 

  11. Wolfram Research, Inc., MATHEMATICA, version 11.1, Wolfram Research, Inc., Champaign, Illinois, (2011)

  12. Goano, M.: Algorithm 745: computation of the complete and incomplete Fermi–Dirac integral. ACM Trans. Math. Softw. 21(3), 221–232 (1995)

    Article  MATH  Google Scholar 

  13. Garoni, T.M., Frankela, N.E.: Complete asymptotic expansions of the Fermi–Dirac integrals \(F_{p}\left( \eta \right) =\frac{1}{\Gamma (p+1) }\int \limits _{0}^{\infty }\frac{\varepsilon _{p}}{1+\varepsilon ^{\varepsilon -\eta }}d\varepsilon \). J. Math. Phys. 42(4), 1860–1868 (2001)

    Article  MathSciNet  Google Scholar 

  14. Mohankumar, N., Natarajan, A.: On the very accurate numerical evaluation of the generalized Fermi–Dirac integrals. Comput. Phys. Commun. 207, 193–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cody, W.J., Thacher, H.C.: Rational Chebyshev approximations for Fermi–Dirac integrals of orders -1/2, 1/2 and 3/2. Math. Comput. 21(97), 30–40 (1967)

    MATH  Google Scholar 

  16. Chevillard, S., Revol, N.: Computation of the error function erf in arbitrary precision with correct rounding. In: Proceedings of RNC 8 8th Conference on Real Numbers and Computers, pp. 27–36 (2008)

  17. Chevillard, S.: The functions erf and erfc computed with arbitrary precision and explicit error bounds. Inf. Comput. 216, 72–95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Çopuroğlu, E., Sözen, S., Yamçıçıer, A.: Analytical evaluation of heat capacities of structural stainless steels by using \(n\)-dimensional integer and noninteger Debye functions. Int. J. Steel Struct. 17(2), 739–742 (2017)

    Article  Google Scholar 

  19. Çopuroğlu, E., Tural Mehmetoğlu, T.: Full analytical evaluation of the Einstein relation for disordered semiconductors. IEEE Trans. Elect. Dev. 62(5), 1580–1583 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express his thanks to Jerry A. Selvaggi for pointing out the connection between Fermi–Dirac-type integrals and real convolution. His observation has allowed the author to analytically evaluate a wide range of seemingly intractable integrals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry P. Selvaggi.

A Appendix

A Appendix

A derivation of the Gauss–Fermi function begins with (8) rewritten below.

$$\begin{aligned} G\left( \alpha ,\beta ,\xi \right) =\mathop {\displaystyle \int }\limits _{0}^{\infty }\frac{ e^{-\alpha \left( x-\beta \right) ^{2}}}{1+e^{x-\xi }}\hbox {d}x+\mathop {\displaystyle \int }\limits _{0}^{ \infty }\frac{e^{-\alpha \left( x+\beta \right) ^{2}}}{1+e^{-(x+\xi )}}\hbox {d}x. \end{aligned}$$
(14)

Rewrite (14) as follows

$$\begin{aligned} G\left( \alpha ,\beta ,\xi \right)= & {} \mathop {\displaystyle \int }\limits _{0}^{\xi }\frac{ e^{-\alpha \left( x-\beta \right) ^{2}}}{1+e^{-(\xi -x)}}\hbox {d}x \nonumber \\&\,+\,\mathop {\displaystyle \int }\limits _{\xi }^{\infty }\frac{e^{-\alpha \left( x-\beta \right) ^{2}}e^{-\left( x-\xi \right) }}{1+e^{-\left( x-\xi \right) }}\hbox {d}x \nonumber \\&\,+\,\mathop {\displaystyle \int }\limits _{0}^{\infty }\frac{e^{-\alpha \left( x+\beta \right) ^{2}}}{ 1+e^{-(x+\xi )}}\hbox {d}x. \end{aligned}$$
(15)

The denominators in each of the integrals in Eqs. (15) can be expanded in a binomial expansion. Similar methods can be found in Çopuro ğlu et al. [18, 19]. Each expansion results in a convergent integral within its limits of integration. This expansion leads to the following result.

$$\begin{aligned} G\left( \alpha ,\beta ,\xi \right)= & {} \sum _{p=1}^{\infty }(-1)^{p-1}\mathop {\displaystyle \int }\limits _{0}^{\xi }e^{-\alpha \left( x-\beta \right) ^{2}}e^{-(p-1)(\xi -x)}\hbox {d}x \nonumber \\&\,+\,\sum _{p=1}^{\infty }(-1)^{p-1}\mathop {\displaystyle \int }\limits _{\xi }^{\infty }e^{-\alpha \left( x-\beta \right) ^{2}}e^{-p(x-\xi )}\hbox {d}x \nonumber \\&\,+\,\sum _{p=0}^{\infty }(-1)^{p}\mathop {\displaystyle \int }\limits _{\xi }^{\infty }e^{-\alpha \left( x+\beta \right) ^{2}}e^{-p(x+\xi )}\hbox {d}x, \nonumber \\= & {} \mathop {\displaystyle \int }\limits _{0}^{\xi }e^{-\alpha \left( x-\beta \right) ^{2}}\hbox {d}x+\sum _{p=1}^{\infty }(-1)^{p} \nonumber \\&\,\times \left[ \mathop {\displaystyle \int }\limits _{0}^{\xi }e^{-\alpha \left( x-\beta \right) ^{2}}e^{-p(\xi -x)}\hbox {d}x\right. \nonumber \\&\left. \,-\, \mathop {\displaystyle \int }\limits _{\xi }^{\infty }e^{-\alpha \left( x-\beta \right) ^{2}}e^{-p(x-\xi )}\hbox {d}x\right] \nonumber \\&\,+\,\sum _{p=0}^{\infty }\left( -1\right) ^{p}\mathop {\displaystyle \int }\limits _{0}^{\infty }e^{-\alpha (x+\beta )^{2}-p(x+\xi )}\hbox {d}x. \end{aligned}$$
(16)

Equation (16) can now be transformed into a more recognizable form. Define the following:

$$\begin{aligned}&g_{0}\left( \alpha ,\beta ,\xi \right) =\mathop {\displaystyle \int }\limits _{0}^{\xi }e^{-\alpha \left( x-\beta \right) ^{2}}\hbox {d}x, \end{aligned}$$
(17)
$$\begin{aligned}&g_{1}\left( \alpha ,\beta ,\xi \right) =\mathop {\displaystyle \int }\limits _{0}^{\xi }e^{-\alpha \left( x-\beta \right) ^{2}}e^{-p(\xi -x)}\hbox {d}x, \end{aligned}$$
(18)
$$\begin{aligned}&g_{2}\left( \alpha ,\beta ,\xi \right) =\mathop {\displaystyle \int }\limits _{\xi }^{\infty }e^{-\alpha \left( x-\beta \right) ^{2}}e^{-p(x-\xi )}\hbox {d}x, \end{aligned}$$
(19)
$$\begin{aligned}&g_{3}\left( \alpha ,\beta ,\xi \right) =\mathop {\displaystyle \int }\limits _{0}^{\infty }e^{-\alpha (x+\beta )^{2}-p(x+\xi )}\hbox {d}x. \end{aligned}$$
(20)

In (17), let \(y^{2}=\alpha \left( x-\beta \right) ^{2}\). This results in the following expression.

$$\begin{aligned} g_{0}\left( \alpha ,\beta ,\xi \right)= & {} \frac{1}{\sqrt{\alpha }} \mathop {\displaystyle \int }\limits _{-\beta \sqrt{\alpha }}^{\left( \xi -\beta \right) \sqrt{\alpha }}e^{-y^{2}}\hbox {d}y, \nonumber \\= & {} \frac{1}{\sqrt{\alpha }}\left( \mathop {\displaystyle \int }\limits _{0}^{\beta \sqrt{\alpha } }e^{-y^{2}}\hbox {d}y+\mathop {\displaystyle \int }\limits _{0}^{\left( \xi -\beta \right) \sqrt{\alpha } }e^{-y^{2}}\hbox {d}y\right) , \nonumber \\= & {} \frac{1}{2}\sqrt{\frac{\pi }{\alpha }}\left\{ \hbox {Erf}\left( \beta \sqrt{ \alpha }\right) \right. + \nonumber \\&\left. \hbox {Erf}\sqrt{\alpha }\left( \xi -\beta \right) \right\} , \end{aligned}$$
(21)

where \(\hbox {Erf}(\cdot )\) is the error function. In (18), let \(y=x-\beta \). This results in the following expression.

$$\begin{aligned} g_{1}\left( \alpha ,\beta ,\xi \right) =e^{-p\left( \xi -\beta \right) + \frac{p^{2}}{4\alpha }}\mathop {\displaystyle \int }\limits _{-\beta }^{\xi -\beta }e^{-\alpha \left( y-\frac{p}{2\alpha }\right) ^{2}}\hbox {d}y. \end{aligned}$$
(22)

In (22), let \(v^{2}=\alpha \left( y-\frac{p}{2\alpha }\right) ^{2}\). This results in the following expression.

$$\begin{aligned} g_{1}\left( \alpha ,\beta ,\xi \right)= & {} \frac{e^{\frac{p^{2}}{4\alpha } -p\left( \xi -\beta \right) }}{\sqrt{\alpha }}\mathop {\displaystyle \int }\limits _{-\sqrt{\alpha } \left( \beta +\frac{p}{4\alpha }\right) }^{\sqrt{\alpha }\left( \xi -\beta - \frac{p}{2\alpha }\right) }e^{-v^{2}}\hbox {d}v, \nonumber \\= & {} \frac{e^{\frac{p^{2}}{4\alpha }-p\left( \xi -\beta \right) }}{\sqrt{ \alpha }}\left( \mathop {\displaystyle \int }\limits _{0}^{\sqrt{\alpha }\left( \beta +\frac{p}{ 4\alpha }\right) }e^{-v^{2}}\hbox {d}v\right. + \nonumber \\&\left. \mathop {\displaystyle \int }\limits _{0}^{\sqrt{\alpha }\left( \xi -\beta -\frac{p}{2\alpha }\right) }e^{-v^{2}}\hbox {d}v\right) , \nonumber \\= & {} \frac{1}{2}\sqrt{\frac{\pi }{\alpha }}e^{\frac{p^{2}}{4\alpha }-p\left( \xi -\beta \right) }\left\{ \hbox {Erf}\left( \frac{p}{2\sqrt{\alpha }}+\beta \sqrt{ \alpha }\right) \right. + \nonumber \\&\left. \hbox {Erf}\left( -\frac{p}{2\sqrt{\alpha }}+\sqrt{\alpha }\left( \xi -\beta \right) \right) \right\} . \end{aligned}$$
(23)

The identical steps used in deriving \(g_{1}\left( \alpha ,\beta ,\xi \right) \) are used in deriving \(g_{2}\left( \alpha ,\beta ,\xi \right) \). The expression is given as

$$\begin{aligned} g_{2}\left( \alpha ,\beta ,\xi \right)= & {} \frac{e^{\frac{p^{2}}{4\alpha } -p\left( \beta -\xi \right) }}{\sqrt{\alpha }}\mathop {\displaystyle \int }\limits _{\sqrt{\alpha } \left( \xi -\beta +\frac{p}{2\alpha }\right) }^{\infty }e^{-v^{2}}\hbox {d}v, \nonumber \\= & {} \frac{1}{2}\sqrt{\frac{\pi }{\alpha }}e^{\frac{p^{2}}{4\alpha }+p\left( \xi -\beta \right) } \nonumber \\&\,\times {\text {Erfc}}\left( \frac{p}{2\sqrt{\alpha }}+\sqrt{\alpha }\left( \xi -\beta \right) \right) \text {.} \end{aligned}$$
(24)

Likewise, \(g_{3}\left( \alpha ,\beta ,\xi \right) \) can be written as follows:

$$\begin{aligned} g_{3}\left( \alpha ,\beta ,\xi \right)= & {} \mathop {\displaystyle \int }\limits _{0}^{\infty }e^{-\alpha (x+\beta )^{2}-p(x+\xi )}\hbox {d}x \nonumber \\= & {} e^{-p\left( \xi -\beta \right) }\mathop {\displaystyle \int }\limits _{0}^{\infty }e^{-\alpha (x+\beta )^{2}-p(x+\beta )}\hbox {d}x. \end{aligned}$$
(25)

In (25), let \(u=x+\beta \). This leads to

$$\begin{aligned} g_{3}\left( \alpha ,\beta ,\xi \right) =e^{\frac{p^{2}}{4\alpha }-p\left( \xi -\beta \right) }\mathop {\displaystyle \int }\limits _{\beta }^{\infty }e^{-\alpha \left( u+\frac{ p}{2\alpha }\right) ^{2}}\hbox {d}u. \end{aligned}$$
(26)

In (26), let \(v^{2}=\) \(\alpha \left( u+\frac{p}{2\alpha }\right) ^{2} \). This transformation leads to the following:

$$\begin{aligned} g_{3}\left( \alpha ,\beta ,\xi \right)= & {} \frac{1}{2}\sqrt{\frac{\pi }{ \alpha }}e^{\frac{p^{2}}{4\alpha }-p\left( \xi -\beta \right) } \nonumber \\&{\text {Erfc}}\left[ \left( \frac{p}{2\sqrt{\alpha }}+\beta \sqrt{\alpha }\right) \right] . \end{aligned}$$
(27)

The Gauss–Fermi function is now given by

$$\begin{aligned} G\left( \alpha ,\beta ,\xi \right)= & {} g_{0}\left( \alpha ,\beta ,\xi \right) +\sum _{p=1}^{\infty }(-1)^{p}\left\{ g_{1}\left( \alpha ,\beta ,\xi \right) \right. \nonumber \\&\left. -\,g_{2}\left( \alpha ,\beta ,\xi \right) \right\} +\sum _{p=0}^{\infty }(-1)^{p}g_{3}\left( \alpha ,\beta ,\xi \right) , \nonumber \\= & {} \frac{1}{2}\sqrt{\frac{\pi }{\alpha }}{\text {Erfc}}\left( \sqrt{\alpha }\left( \beta -\xi \right) \right) \nonumber \\&\,+ \frac{1}{2}\sqrt{\frac{\pi }{\alpha }}e^{-\alpha \left( \xi -\beta \right) ^{2}}\sum _{p=1}^{\infty }\left( -1\right) ^{p} \nonumber \\&\,\times \left\{ e^{\left( \frac{p}{2\sqrt{\alpha }}-\sqrt{\alpha }\left( \xi -\beta \right) \right) ^{2}} \right. \nonumber \\&\,\times {\text {Erfc}}\left( \frac{p}{2\sqrt{\alpha }}-\sqrt{\alpha }\left( \xi -\beta \right) \right) \nonumber \\&\, -\,e^{\left( \frac{p}{2\sqrt{\alpha }}+\sqrt{\alpha }\left( \xi -\beta \right) \right) ^{2}} \nonumber \\&\left. \, \times {\text {Erfc}}\left( \frac{p}{2\sqrt{\alpha }}+\sqrt{\alpha }\left( \xi -\beta \right) \right) \right\} . \end{aligned}$$
(28)

This proves the result given by (10) and is valid \(\forall \) \( \alpha \) \(\varepsilon \) \( {\mathbb {R}} \ge 0\), \(\forall \) \(\beta \) \(\varepsilon \) \( {\mathbb {R}} \), and \(\forall \) \(\xi \) \(\varepsilon \) \( {\mathbb {R}} \ge 0\). The Gauss–Fermi function valid \(\forall \) \(\alpha \) \(\varepsilon \) \( {\mathbb {R}} \ge 0\), \(\forall \) \(\beta \) \(\varepsilon \) \( {\mathbb {R}} \), and \(\forall \) \(\xi \) \(\varepsilon \) \( {\mathbb {R}} \le 0\) follows a similar proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaggi, J.P. Analytical evaluation of the charge carrier density of organic materials with a Gaussian density of states revisited. J Comput Electron 17, 61–67 (2018). https://doi.org/10.1007/s10825-017-1113-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1113-5

Keywords

Navigation