Skip to main content
Log in

Double strand DNA breaks in sperm: the bad guy in the crowd

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The main objective of this opinion paper was to bring to light and enhance our understanding of the amount of double-strand DNA breaks in sperm and whether there is a threshold of no return when considering repair by the oocyte/embryo.

Methods

A brief review of literature related to the theories proposed for the appearance of double-strand breaks in human spermatozoa. Further commentary regarding their detection, how oocytes or embryos may deal with them, and what are the consequences if they are not repaired. Finally, a strategy for dealing with patients who have higher levels of double-strand DNA breaks in sperm is proposed by reviewing and presenting data using testicular extracted sperm.

Results

We propose a theory that a threshold may exist in the oocyte that allows either complete or partial DNA repair of impaired sperm. The closer that an embryo is exposed to the threshold, the more the effect on the ensuing embryo will fail to reach various milestones, including blastocyst stage, implantation, pregnancy loss, an adverse delivery outcome, or offspring health. We also present a summary of the role that testicular sperm extraction may play in improving outcomes for couples in which the male has a high double-strand DNA break level in his sperm.

Conclusions

Double-strand DNA breaks in sperm provide a greater stress on repair mechanisms and challenge the threshold of repair in oocytes. It is therefore imperative that we improve our understanding and diagnostic ability of sperm DNA, and in particular, how double-strand DNA breaks originate and how an oocyte or embryo is able to deal with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210:1131–3.

    Article  CAS  PubMed  Google Scholar 

  2. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    Article  CAS  PubMed  Google Scholar 

  3. Frydman N, Prisant N, Hesters L, Frydman R, Tachdjian G, Cohen-Bacrie P, et al. Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril. 2008;89:92–7.

    Article  CAS  PubMed  Google Scholar 

  4. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23:2663–8.

    Article  CAS  PubMed  Google Scholar 

  5. Bungum M, Bungum L, Giwercman A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl. 2011;13:69–75.

    Article  CAS  PubMed  Google Scholar 

  6. Oleszczuk K, Giwercman A, Bungum M. Sperm chromatin structure assay in prediction of in vitro fertilization outcome. Andrology. 2016;4:290–6.

    Article  CAS  PubMed  Google Scholar 

  7. Ribas-Maynou J, García-Peiró A, Fernandez-Encinas A, Amengual MJ, Prada E, Cortés P, et al. Double stranded sperm DNA breaks, measured by Comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One. 2012;7:e44679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17.

    Article  CAS  PubMed  Google Scholar 

  9. Ruixue W, Hongli Z, Zhihong Z, Rulin D, Dongfeng G, Ruizhi L. The impact of semen quality, occupational exposure to environmental factors and lifestyle on recurrent pregnancy loss. J Assist Reprod Genet. 2013;30:1513–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.

    Article  PubMed  Google Scholar 

  11. Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod. 2014;29:904–17.

    Article  CAS  PubMed  Google Scholar 

  12. Agarwal A, Cho CL, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28:164–71.

    Article  PubMed  Google Scholar 

  13. Vilenchik MM, Knudson AG. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. 2003;100:12871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47:497–510.

    Article  CAS  PubMed  Google Scholar 

  15. Gawecka JE, Marh J, Ortega M, Yamauchi Y, Ward MA, Ward WS. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One. 2013;8:e56385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Casanovas A, Ribas-Maynou J, Lara-Cerrillo S, Jimenez-Macedo AR, Hortal O, Benet J, et al. Double-stranded sperm DNA damage is a cause of delay in embryo development and can impair implantation rates. Fertil Steril. 2019;111(699–707):e1.

    Google Scholar 

  17. Khokhlova EV, Fesenko ZS, Sopova JV, Leonova EI. Features of DNA repair in the early stages of mammalian embryonic development. Genes (Basel) 2020;11.

  18. Ali A, Xiao W, Babar ME, Bi Y. Double-stranded break repair in mammalian cells and precise genome editing. Genes (Basel) 2022;13.

  19. Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst). 2022;118:103386.

    Article  CAS  PubMed  Google Scholar 

  20. Rothkamm K, Krüger I, Thompson LH, Löbrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003;23:5706–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008;17:1922–37.

    Article  CAS  PubMed  Google Scholar 

  22. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31:309–19.

    Article  CAS  PubMed  Google Scholar 

  23. Stracker TH, Roig I, Knobel PA, Marjanović M. The ATM signaling network in development and disease. Front Genet. 2013;4:37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McPherson S, Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem. 1993;37:109–28.

    CAS  PubMed  Google Scholar 

  25. McPherson SM, Longo FJ. Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol. 1993;158:122–30.

    Article  CAS  PubMed  Google Scholar 

  26. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70:910–8.

    Article  CAS  PubMed  Google Scholar 

  27. Aitken RJ, Lewis SEM. DNA damage in testicular germ cells and spermatozoa. When and how is it induced? How should we measure it? What does it mean? Andrology 2023.

  28. Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13:36–42.

    Article  CAS  PubMed  Google Scholar 

  29. Pacheco S, Marcet-Ortega M, Lange J, Jasin M, Keeney S, Roig I. The ATM signaling cascade promotes recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genet. 2015;11:e1005017.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.

    Article  CAS  PubMed  Google Scholar 

  31. Vasileva A, Hopkins KM, Wang X, Weisbach MM, Friedman RA, Wolgemuth DJ, et al. The DNA damage checkpoint protein RAD9A is essential for male meiosis in the mouse. J Cell Sci. 2013;126:3927–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ribas-Maynou J, Nguyen H, Wu H, Ward WS. Functional aspects of sperm chromatin organization. Results Probl Cell Differ. 2022;70:295–311.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, et al. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16:1912–21.

    Article  CAS  PubMed  Google Scholar 

  34. Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol. 2006;250:70–9.

    Article  CAS  PubMed  Google Scholar 

  35. Sousa M, Cunha M, Pereira M, Silva J, Gonçalves A, Viana P et al. Clinical outcomes of 127 patients with recurrent implantation failure treated with testicular sperm aspiration (TESA) In: European Society of Human Reproduction, 2022:i218.

  36. Esteves SC, Roque M, Bradley CK, Garrido N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril. 2017;108(456–67):e1.

    Google Scholar 

  37. Ribas-Maynou J, García-Peiró A, Abad C, Amengual MJ, Navarro J, Benet J. Alkaline and neutral Comet assay profiles of sperm DNA damage in clinical groups. Hum Reprod. 2012;27:652–8.

    Article  CAS  PubMed  Google Scholar 

  38. Drevet JR, Hallak J, Nasr-Esfahani MH, Aitken RJ. Reactive oxygen species and their consequences on the structure and function of mammalian spermatozoa. Antioxid Redox Signal. 2022;37:481–500.

    Article  CAS  PubMed  Google Scholar 

  39. Lara-Cerrillo S, Ribas-Maynou J, Rosado-Iglesias C, Lacruz-Ruiz T, Benet J, García-Peiró A. Sperm selection during ICSI treatments reduces single- but not double-strand DNA break values compared to the semen sample. J Assist Reprod Genet. 2021;38:1187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Parrella A, Keating D, Cheung S, Xie P, Stewart JD, Rosenwaks Z, et al. A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. J Assist Reprod Genet. 2019;36:2057–66.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kocur OM, Xie P, Cheung S, Souness S, McKnight M, Rosenwaks Z et al. Can a sperm selection technique improve embryo ploidy? Andrology 2022.

  42. Enciso M, Iglesias M, Galán I, Sarasa J, Gosálvez A, Gosálvez J. The ability of sperm selection techniques to remove single- or double-strand DNA damage. Asian J Androl. 2011;13:764–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lara-Cerrillo S, Urda Muñoz C, de la Casa Heras M, Camacho Fernández-Pacheco S, Gijón de la Santa J, Lacruz-Ruiz T et al. Microfluidic sperm sorting improves ICSI outcomes in patients with increased values of double-strand breaks in sperm DNA. Rev Int Androl 2022.

  44. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21:711–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaughan DA, Sakkas D. Sperm selection methods in the 21st century. Biol Reprod. 2019;101:1076–82.

    Article  PubMed  Google Scholar 

  46. Barbagallo F, Cannarella R, Crafa A, Manna C, La Vignera S, Condorelli RA et al. The impact of a very short abstinence period on conventional sperm parameters and sperm DNA fragmentation: a systematic review and meta-analysis. J Clin Med 2022;11.

  47. Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL. Artificial intelligence in the embryology laboratory: a review. Reprod Biomed Online. 2022;44:435–48.

    Article  PubMed  Google Scholar 

  48. Tarozzi N, Nadalini M, Coticchio G, Zacà C, Lagalla C, Borini A. The paternal toolbox for embryo development and health. Mol Hum Reprod 2021;27.

  49. Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet. 2018;35:1953–68.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Coticchio G, Barrie A, Lagalla C, Borini A, Fishel S, Griffin D, et al. Plasticity of the human preimplantation embryo: developmental dogmas, variations on themes and self-correction. Hum Reprod Update. 2021;27:848–65.

    Article  PubMed  Google Scholar 

  51. Barad DH, Albertini DF, Molinari E, Gleicher N. IVF outcomes of embryos with abnormal PGT-A biopsy previously refused transfer: a prospective cohort study. Hum Reprod. 2022;37:1194–206.

    Article  CAS  PubMed  Google Scholar 

  52. Yang M, Rito T, Metzger J, Naftaly J, Soman R, Hu J, et al. Depletion of aneuploid cells in human embryos and gastruloids. Nat Cell Biol. 2021;23:314–21.

    Article  CAS  PubMed  Google Scholar 

  53. Kahraman S, Tasdemir M, Tasdemir I, Vicdan K, Ozgur S, Polat G, et al. Pregnancies achieved with testicular and ejaculated spermatozoa in combination with intracytoplasmic sperm injection in men with totally or initially immotile spermatozoa in the ejaculate. Hum Reprod. 1996;11:1343–6.

    Article  CAS  PubMed  Google Scholar 

  54. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  55. Hauser R, Bibi G, Yogev L, Carmon A, Azem F, Botchan A, et al. Virtual azoospermia and cryptozoospermia–fresh/frozen testicular or ejaculate sperm for better IVF outcome? J Androl. 2011;32:484–90.

    Article  PubMed  Google Scholar 

  56. Ben-Ami I, Raziel A, Strassburger D, Komarovsky D, Ron-El R, Friedler S. Intracytoplasmic sperm injection outcome of ejaculated versus extracted testicular spermatozoa in cryptozoospermic men. Fertil Steril. 2013;99:1867–71.

    Article  PubMed  Google Scholar 

  57. Arafa M, AlMalki A, AlBadr M, Burjaq H, Majzoub A, AlSaid S et al. ICSI outcome in patients with high DNA fragmentation: testicular versus ejaculated spermatozoa. Andrologia 2018;50.

  58. Herrero MB, Lusignan MF, Son WY, Sabbah M, Buckett W, Chan P. ICSI outcomes using testicular spermatozoa in non-azoospermic couples with recurrent ICSI failure and no previous live births. Andrology. 2019;7:281–7.

    Article  CAS  PubMed  Google Scholar 

  59. Hourvitz A, Shulman A, Madjar I, Levron J, Levran D, Mashiach S, et al. In vitro fertilization treatment for severe male factor: a comparative study of intracytoplasmic sperm injection with testicular sperm extraction and with spermatozoa from ejaculate. J Assist Reprod Genet. 1998;15:386–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weissman A, Horowitz E, Ravhon A, Nahum H, Golan A, Levran D. Pregnancies and live births following ICSI with testicular spermatozoa after repeated implantation failure using ejaculated spermatozoa. Reprod Biomed Online. 2008;17:605–9.

    Article  PubMed  Google Scholar 

  61. Tsai CC, Huang FJ, Wang LJ, Lin YJ, Kung FT, Hsieh CH, et al. Clinical outcomes and development of children born after intracytoplasmic sperm injection (ICSI) using extracted testicular sperm or ejaculated extreme severe oligo-astheno-teratozoospermia sperm: a comparative study. Fertil Steril. 2011;96:567–71.

    Article  PubMed  Google Scholar 

  62. Amirjannati N, Heidari-Vala H, Akhondi MA, Hosseini Jadda SH, Kamali K, Sadeghi MR. Comparison of intracytoplasmic sperm injection outcomes between spermatozoa retrieved from testicular biopsy and from ejaculation in cryptozoospermic men. Andrologia. 2012;44(Suppl 1):704–9.

    Article  PubMed  Google Scholar 

  63. Esteves SC, Agarwal A. Reproductive outcomes, including neonatal data, following sperm injection in men with obstructive and nonobstructive azoospermia: case series and systematic review. Clinics (Sao Paulo). 2013;68(Suppl 1):141–50.

    Article  PubMed  Google Scholar 

  64. Esteves SC, Sánchez-Martín F, Sánchez-Martín P, Schneider DT, Gosálvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104:1398–405.

    Article  PubMed  Google Scholar 

  65. Mehta A, Bolyakov A, Schlegel PN, Paduch DA. Higher pregnancy rates using testicular sperm in men with severe oligospermia. Fertil Steril. 2015;104:1382–7.

    Article  PubMed  Google Scholar 

  66. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016;4:903–10.

    Article  CAS  PubMed  Google Scholar 

  67. Cui X, Ding P, Gao G, Zhang Y. Comparison of the clinical outcomes of intracytoplasmic sperm injection between spermatozoa retrieved from testicular biopsy and from ejaculate in cryptozoospermia patients. Urology. 2017;102:106–10.

    Article  PubMed  Google Scholar 

  68. Ketabchi AA. Intracytoplasmic sperm injection outcomes with freshly ejaculated sperms and testicular or epididymal sperm extraction in patients with idiopathic cryptozoospermia. Nephrourol Mon. 2016;8: e41375.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhu YT, Luo C, Li Y, Li H, Quan S, Deng YJ, et al. Differences and similarities between extremely severe oligozoospermia and cryptozoospermia in intracytoplasmic sperm injection. Asian J Androl. 2016;18:904–7.

    Article  PubMed  Google Scholar 

  70. Al-Malki AH, Alrabeeah K, Mondou E, Brochu-Lafontaine V, Phillips S, Zini A. Testicular sperm aspiration (TESA) for infertile couples with severe or complete asthenozoospermia. Andrology. 2017;5:226–31.

    Article  CAS  PubMed  Google Scholar 

  71. Pabuccu EG, Caglar GS, Tangal S, Haliloglu AH, Pabuccu R. Testicular versus ejaculated spermatozoa in ICSI cycles of normozoospermic men with high sperm DNA fragmentation and previous ART failures. Andrologia 2017;49.

  72. Kawwass JF, Chang J, Boulet SL, Nangia A, Mehta A, Kissin DM. Surgically acquired sperm use for assisted reproductive technology: trends and perinatal outcomes, USA, 2004–2015. J Assist Reprod Genet. 2018;35:1229–37.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lee SH, Park CW, Cheon YP, Lim CK. Potential of testicular sperm to support embryonic development to the blastocyst stage is comparable to that of ejaculated sperm. J Assist Reprod Genet. 2018;35:1103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang J, Xue H, Qiu F, Zhong J, Su J. Testicular spermatozoon is superior to ejaculated spermatozoon for intracytoplasmic sperm injection to achieve pregnancy in infertile males with high sperm DNA damage. Andrologia. 2019;51:e13175.

    Article  PubMed  Google Scholar 

  75. Alharbi M, Hamouche F, Phillips S, Kadoch JI, Zini A. Use of testicular sperm in couples with SCSA-defined high sperm DNA fragmentation and failed intracytoplasmic sperm injection using ejaculated sperm. Asian J Androl. 2020;22:348–53.

    Article  CAS  PubMed  Google Scholar 

  76. Yamaguchi K, Ishikawa T, Mizuta S, Takeuchi T, Matsubayashi H, Kokeguchi S, et al. Clinical outcomes of microdissection testicular sperm extraction and intracytoplasmic sperm injection in Japanese men with Y chromosome microdeletions. Reprod Med Biol. 2020;19:158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Steele EK, McClure N, Maxwell RJ, Lewis SE. A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol Hum Reprod. 1999;5:831–5.

    Article  CAS  PubMed  Google Scholar 

  78. Moskovtsev SI, Jarvi K, Mullen JB, Cadesky KI, Hannam T, Lo KC. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93:1142–6.

    Article  CAS  PubMed  Google Scholar 

  79. Moskovtsev SI, Alladin N, Lo KC, Jarvi K, Mullen JB, Librach CL. A comparison of ejaculated and testicular spermatozoa aneuploidy rates in patients with high sperm DNA damage. Syst Biol Reprod Med. 2012;58:142–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan G. Alvarez or Denny Sakkas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, J.G., García-Peiró, A., Barros, A. et al. Double strand DNA breaks in sperm: the bad guy in the crowd. J Assist Reprod Genet 40, 745–751 (2023). https://doi.org/10.1007/s10815-023-02748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02748-5

Keywords

Navigation