Skip to main content

Advertisement

Log in

Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

There are large variations in the number of oocytes within each woman, and biologically, the total quantity is at its maximum before the woman is born. Scientific knowledge is limited about factors controlling the oocyte pool and how to measure it. Within fertility clinics, there is no uniform agreement on the diagnostic criteria for each common measure of ovarian reserve in women, and thus, studies often conflict. While declining oocyte quantity/quality is a normal physiologic occurrence as women age, some women experience diminished ovarian reserve (DOR) much earlier than usual and become prematurely infertile. Key clinical features of DOR are the presence of regular menstrual periods and abnormal-but-not-postmenopausal ovarian reserve test results. A common clinical challenge is counseling patients with conflicting ovarian reserve test results. The clinical diagnosis of DOR and the interpretation of ovarian reserve testing are complicated by changing lab testing options and processing for anti-mullerian hormone since 2010. Further, complicating the diagnostic and research scenario is the existence of other distinct yet related clinical terms, specifically premature ovarian failure, primary ovarian insufficiency, poor ovarian response, and functional ovarian reserve. The similarities and differences between the definitions of DOR with each of these four terms are reviewed. We recommend greater medical community involvement in terminology decisions, and the addition of DOR-specific medical subject-heading search terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMH:

Anti-mullerian hormone

AFC:

Antral follicle count

ART:

Assisted reproductive technologies

DOR:

Diminished ovarian reserve

FSH:

Follicle-stimulating hormone

FOR:

Functional ovarian reserve

IVF:

In vitro fertilization

POF:

Premature ovarian failure

POI:

Primary ovarian insufficiency

POR:

Poor ovarian response

SART:

Society for Assisted Reproductive Technology

TOR:

Total ovarian reserve

References

  1. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708.

    Article  PubMed  Google Scholar 

  2. Sharara FI, Scott JRT, Seifer DB. The detection of diminished ovarian reserve in infertile women. Am J Obstet Gynecol. 1998;179(3):804–12.

    Article  CAS  PubMed  Google Scholar 

  3. Levi AJ, Raynault MF, Bergh PA, Drews MR, Miller BT, Scott RT Jr. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9.

    Article  CAS  PubMed  Google Scholar 

  4. Scott RT Jr, Hofmann GE. Prognostic assessment of ovarian reserve. Fertil Steril. 1995;63(1):1–11.

    Article  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention. Assisted reproductive technology national summary report. Atlanta (GA): American Society for Reproductive Medicine, Society for Assisted Reproductive Technology; 2016. https://www.cdc.gov/art/reports/2014/national-summary.html (2014).

  6. Centers for Disease Control and Prevention. Reporting of pregnancy success rates from assisted reproductive technology (ART) programs. Department of Health and Human Services; 2015. Contract No. 2015–21108.

  7. Scriver J, Baker V, Young S, Behr B, Pastore L. Inter-laboratory validation of the measurement of follicle stimulating hormone (FSH) after various lengths of frozen storage. Reprod Biol Endocrinol. 2010;8(1):145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li HW, Wong BP, Ip WK, Yeung WS, Ho PC, Ng EH. Comparative evaluation of three new commercial immunoassays for anti-Mullerian hormone measurement. Hum Reprod. 2016;31(12):2796–802.

    Article  CAS  PubMed  Google Scholar 

  9. Devine K, Mumford SL, Wu M, DeCherney AH, Hill MJ, Propst A. Diminished ovarian reserve in the United States assisted reproductive technology population: diagnostic trends among 181,536 cycles from the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System. Fertil Steril. 2015;104(3):612–19.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Practice Committee of the American Society for Reproductive Medicine. Testing and interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2012;98(6):1407–15.

    Article  Google Scholar 

  11. Ferraretti AP, Gianaroli L. The Bologna criteria for the definition of poor ovarian responders: is there a need for revision? Hum Reprod. 2014;29(9):1842–5.

    Article  PubMed  Google Scholar 

  12. Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.

    Article  CAS  PubMed  Google Scholar 

  13. Sills ES, Alper MM, Walsh AP. Ovarian reserve screening in infertility: practical applications and theoretical directions for research. Eur J Obstet Gynecol Reprod Biol. 2009;146(1):30–6.

    Article  PubMed  Google Scholar 

  14. Tobler KJ, Shoham G, Christianson MS, Zhao Y, Leong M, Shoham Z. Use of anti-mullerian hormone for testing ovarian reserve: a survey of 796 infertility clinics worldwide. J Assist Reprod Genet. 2015;32(10):1441–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barnhart K, Osheroff J. Follicle stimulating hormone as a predictor of fertility. Current Opin Obstet Gynecol. 1998;10(3):227–32.

    Article  CAS  Google Scholar 

  16. Leader B, Hegde A, Baca Q, Stone K, Lannon B, Seifer DB, et al. High frequency of discordance between antimullerian hormone and follicle-stimulating hormone levels in serum from estradiol-confirmed days 2 to 4 of the menstrual cycle from 5,354 women in U.S. fertility centers. Fertil Steril. 2012;98(4):1037–42.

    Article  CAS  PubMed  Google Scholar 

  17. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, et al. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. Menopause (New York, NY). 2012;19(4):387–95.

    Article  Google Scholar 

  18. Buyuk E, Seifer DB, Younger J, Grazi RV, Lieman H. Random anti-Mullerian hormone (AMH) is a predictor of ovarian response in women with elevated baseline early follicular follicle-stimulating hormone levels. Fertil Steril. 2011;95(7):2369–72.

    Article  CAS  PubMed  Google Scholar 

  19. Gleicher N, Weghofer A, Barad DH. Discordances between follicle stimulating hormone (FSH) and anti-Mullerian hormone (AMH) in female infertility. Reprod Biol Endocrinol. 2010;8:64.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.

    Article  CAS  PubMed  Google Scholar 

  21. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30(5):465–93.

    Article  CAS  PubMed  Google Scholar 

  22. Guerif F, Lemseffer M, Couet ML, Gervereau O, Ract V, Royere D. Serum antimullerian hormone is not predictive of oocyte quality in vitro fertilization. Annales d Endocrinologie. 2009;70(4):230–4.

    Article  CAS  PubMed  Google Scholar 

  23. Abdalla H, Thum MY. An elevated basal FSH reflects a quantitative rather than qualitative decline of the ovarian reserve. Hum Reprod. 2004;19(4):893–8.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson SM, La Marca A. The journey from the old to the new AMH assay: how to avoid getting lost in the values. Reprod BioMed Online. 2011;23(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  25. Nelson SM, Pastuszek E, Kloss G, Malinowska I, Liss J, Lukaszuk A, et al. Two new automated, compared with two enzyme-linked immunosorbent, antimullerian hormone assays. Fertil Steril. 2015;104(4):1016–21.e6.

    Article  CAS  PubMed  Google Scholar 

  26. Su HI, Sammel MD, Homer MV, Bui K, Haunschild C, Stanczyk FZ. Comparability of antimullerian hormone levels among commercially available immunoassays. Fertil Steril. 2014;101(6):1766–72.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallace AM, Faye SA, Fleming R, Nelson SM. A multicentre evaluation of the new Beckman Coulter anti-Mullerian hormone immunoassay (AMH Gen II). Ann Clin Biochem. 2011;48(Pt 4):370–3.

    Article  CAS  PubMed  Google Scholar 

  28. Welsh P, Smith K, Nelson SM. A single-centre evaluation of two new anti-Mullerian hormone assays and comparison with the current clinical standard assay. Hum Reprod. 2014;29(5):1035–41.

    Article  PubMed  Google Scholar 

  29. Almog B, Shehata F, Suissa S, Holzer H, Shalom-Paz E, La Marca A, et al. Age-related nomograms of serum antimüllerian hormone levels in a population of infertile women: a multicenter study. Fertil Steril. 2011;95(7):2359–63.

    Article  CAS  PubMed  Google Scholar 

  30. Nelson SM, Iliodromiti S, Fleming R, Anderson R, McConnachie A, Messow C-M. Reference range for the antimüllerian hormone Generation II assay: a population study of 10,984 women, with comparison to the established Diagnostics Systems Laboratory nomogram. Fertil Steril. 2014;101(2):523–9.

    Article  CAS  PubMed  Google Scholar 

  31. Nelson SM, Messow MC, Wallace AM, Fleming R, McConnachie A. Nomogram for the decline in serum antimüllerian hormone: a population study of 9,601 infertility patients. Fertil Steril. 2011;95(2):736–41.e3.

    Article  CAS  PubMed  Google Scholar 

  32. Seifer DB, Baker VL, Leader B. Age-specific serum anti-Mullerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil Steril. 2011;95(2):747–50.

    Article  CAS  PubMed  Google Scholar 

  33. Barad DH, Weghofer A, Gleicher N. Utility of age-specific serum anti-Mullerian hormone concentrations. Reprod BioMed Online. 2011;22(3):284–91.

    Article  CAS  PubMed  Google Scholar 

  34. Pastore LM, McMurry TL, Williams CD, Baker VL, Young SL. AMH in women with diminished ovarian reserve: potential differences by FMR1 CGG repeat level. J Assist Reprod Genet. 2014;31(10):1295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rebar RW, Connolly HV. Clinical features of young women with hypergonadotropic amenorrhea. Fertil Steril. 1990;53(5):804–10.

    Article  CAS  PubMed  Google Scholar 

  36. Nelson LM, Anasti JN, Kimzey LM, Defensor RA, Lipetz KJ, White BJ, et al. Development of luteinized graafian follicles in patients with karyotypically normal spontaneous premature ovarian failure. J Clin Endocrinol Metab. 1994;79(5):1470–5.

    CAS  PubMed  Google Scholar 

  37. Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol. 2008;68(4):499–509.

    Article  Google Scholar 

  38. Cooper AR, Baker VL, Sterling EW, Ryan ME, Woodruff TK, Nelson LM. The time is now for a new approach to primary ovarian insufficiency. Fertil Steril. 2011;95(6):1890–7.

    Article  PubMed  Google Scholar 

  39. Pastore LM, Johnson J. The FMR1 gene, infertility and reproductive decision-making: a review. Front Genet. 2014;5:195.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Papathanasiou A. Implementing the ESHRE ‘poor responder’ criteria in research studies: methodological implications. Hum Reprod. 2014;29(9):1835–8.

    Article  PubMed  Google Scholar 

  41. Venetis CA. The Bologna criteria for poor ovarian response: the good, the bad and the way forward. Hum Reprod. 2014;29(9):1839–41.

    Article  PubMed  Google Scholar 

  42. Molloy D, Martin M, Speirs A, Lopata A, Clarke G, McBain J, et al. Performance of patients with a “frozen pelvis” in an in vitro fertilization program. Fertil Steril. 1987;47(3):450–5.

    Article  CAS  PubMed  Google Scholar 

  43. Keay SD, Barlow R, Eley A, Masson GM, Anthony FW, Jenkins JM. The relation between immunoglobulin G antibodies to Chlamydia trachomatis and poor ovarian response to gonadotropin stimulation before in vitro fertilization. Fertil Steril. 1998;70(2):214–8.

    Article  CAS  PubMed  Google Scholar 

  44. Nargund G, Cheng WC, Parsons J. The impact of ovarian cystectomy on ovarian response to stimulation during in-vitro fertilization cycles. Hum Reprod. 1996;11(1):81–3.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Velasco JA, Somigliana E. Management of endometriomas in women requiring IVF: to touch or not to touch. Hum Reprod. 2009;24(3):496–501.

    Article  PubMed  Google Scholar 

  46. Fritz MA, Speroff L, editors. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  47. Gleicher N, Weghofer A, Barad DH. Defining ovarian reserve to better understand ovarian aging. Reprod Biol Endocrinol. 2011;9:23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim HA, Seong MK, Kim JH, Kim YG, Choi HS, Kim JS, et al. Prognostic value of anti-Mullerian hormone and inhibin B in patients with premenopausal hormone receptor-positive breast cancer. Anticancer Res. 2016;36(3):1051–7.

    CAS  PubMed  Google Scholar 

  49. Gleicher N, Kushnir VA, Weghofer A, Barad DH. The importance of adrenal hypoandrogenism in infertile women with low functional ovarian reserve: a case study of associated adrenal insufficiency. Reprod Biol Endocrinol. 2016;14:23.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Iliodromiti S, Iglesias Sanchez C, Messow CM, Cruz M, Garcia Velasco J, Nelson SM. Excessive age-related decline in functional ovarian reserve in infertile women: prospective cohort of 15,500 women. J Clin Endocrinol Metab. 2016;101(9):3548–54.

    Article  CAS  PubMed  Google Scholar 

  51. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9(12):e1001356.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chandra A, Copen CE, Stephen EH. Infertility service use in the United States: data from the National Survey of Family Growth, 1982–2010. National Health Stat Rep. 2014(73):1–21.

  53. Society for Assisted Reproduction. Patient’s own eggs, 2014 preliminary live birth per patient. Center for disease control and prevention; 2017. https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=0#live-birth-patient

  54. Dyer S, Chambers GM, de Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum Reprod. 2016;31(7):1588–609.

    Article  CAS  PubMed  Google Scholar 

  55. Groff AA, Covington SN, Halverson LR, Fitzgerald OR, Vanderhoof V, Calis K, et al. Assessing the emotional needs of women with spontaneous premature ovarian failure. Fertil Steril. 2005;83(6):1734–41.

    Article  PubMed  Google Scholar 

  56. Pastore LM, Young SL, Manichaikul A, Baker VL, Wang X, Finkelstein J. Distribution of the FMR1 gene in females by race-ethnicity: women with diminished ovarian reserve versus women with normal fertility (SWAN Study). Fertil Steril. 2017;1:205–11.

    Article  Google Scholar 

  57. Walker E, Clark ML, Stelling J, Timko MP, Pastore LM. The impact of genetic carrier testing in reproductive decision-making: FMR1 testing in women with diminished ovarian reserve. J Endocrinol Diabetes Obes. 2017;5(1):1098.

    Google Scholar 

  58. Greene AD, Patounakis G, Segars JH. Genetic associations with diminished ovarian reserve: a systematic review of the literature. J Assist Reprod Genet. 2014;31(8):935–46.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Murray A, Schoemaker MJ, Bennett CE, Ennis S, Macpherson JN, Jones M, et al. Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency. Genet Med. 2014;16(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  60. Fortuno C, Labarta E. Genetics of primary ovarian insufficiency: a review. J Assist Reprod Genet. 2014;31(12):1573–85.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schuh-Huerta SM, Johnson NA, Rosen MP, Sternfeld B, Cedars MI, Reijo Pera RA. Genetic variants and environmental factors associated with hormonal markers of ovarian reserve in Caucasian and African American women. Hum Reprod. 2012;27(2):594–608.

    Article  CAS  PubMed  Google Scholar 

  63. de la Noval BD. Potential implications on female fertility and reproductive lifespan in BRCA germline mutation women. Arch Gynecol Obstet. 2016;294(5):1099–103.

    Article  PubMed  Google Scholar 

  64. Phillips K-A, Collins IM, Milne RL, McLachlan SA, Friedlander M, Hickey M, et al. Anti-Müllerian hormone serum concentrations of women with germline BRCA1 or BRCA2 mutations. Hum Reprod. 2016;31(5):1126–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang ET, Pisarska MD, Bresee C, Chen YD, Lester J, Afshar Y, et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril. 2014;102(6):1723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giordano S, Garrett-Mayer E, Mittal N, Smith K, Shulman L, Passaglia C, et al. Association of BRCA1 mutations with impaired ovarian reserve: connection between infertility and breast/ovarian cancer risk. J Adolesc Young Adult Oncol. 2016;5(4):337–43. 

    Article  PubMed  PubMed Central  Google Scholar 

  67. Finch A, Valentini A, Greenblatt E, Lynch HT, Ghadirian P, Armel S, et al. Frequency of premature menopause in women who carry a BRCA1 or BRCA2 mutation. Fertil Steril. 2013;99(6):1724–8.

    Article  CAS  PubMed  Google Scholar 

  68. Pal L, Bevilacqua K, Zeitlian G, Shu J, Santoro N. Implications of diminished ovarian reserve (DOR) extend well beyond reproductive concerns. Menopause (New York, NY). 2008;15(6):1086–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Pastore.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastore, L.M., Christianson, M.S., Stelling, J. et al. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet 35, 17–23 (2018). https://doi.org/10.1007/s10815-017-1058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1058-4

Keywords

Navigation