Skip to main content
Log in

Numerical study of fatigue crack growth considering an elastic–plastic layer in mixed-mode loading

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this work, crack propagation simulations in a weak surface between an elastic–plastic layer and an elastic substrate are considered. A plane strain model is used in the simulations. Fracture propagation process is taken into account by an irreversible cyclic cohesive zone model. Loading applied to the structure is rotated in order that mixed loading modes could be introduced. Besides loading, thickness of the elastic–plastic layer is also changed. All other intrinsic fracture properties are kept constant. The present work shows a direct relation between mode II applied energy and the energy dissipated plastically during propagation. As a consequence, the introduction of mode II loading intensifies the effects of the elastic–plastic layer, resulting substantially larger plastic strains, more extensive crack closure during unloading and smaller tractions at the crack tip when the size of the layer increases. The result is a substantial increase in the fatigue crack growth resistance. These effects are minimal or not observed when only mode I is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. For brevity, \(\varDelta G_{I,0}\) will be called only as applied energy, from now on.

  2. Although not shown in the presented results, a good correlation of the size of the plastic zone when \(h_l / \delta _0 \rightarrow \infty \) can be obtained comparing present solutions to analytical solutions associated to mixed mode, see for instance Benrahou et al. (2007).

  3. Residual hydrostatic stresses are positive due to normal Cauchy stresses in x-direction.

References

  • Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, Boaca Raton

    Book  Google Scholar 

  • Benrahou K, Benguediab M, Belhouari M, Nait-Abdelaziz M, Imad A (2007) Estimation of the plastic zone by finite element method under mixed mode (i and ii) loading. Comput Mater Sci 38(4):595–601

    Article  CAS  Google Scholar 

  • Bharadwaj MV, Banerjee A (2014) Effect of mode-mixity on fatigue crack growth. Procedia Eng 86:653–661

    Article  Google Scholar 

  • Bouvard JL, Chaboche JL, Feyel F, Gallerneau F (2009) A cohesive zone model for fatigue and creep-fatigue crack growth in single crystal superalloys. Int J Fatigue 31(5):868–879

    Article  CAS  Google Scholar 

  • Cannon R, Dalgleish B, Dauskardt R, Oh T, Ritchie R (1991) Cyclic fatigue-crack propagation along ceramic/metal interfaces. Acta Metall Mater 39(9):2145–2156

    Article  CAS  Google Scholar 

  • Cao J, Li F, Ma X, Sun Z (2018) Study of anisotropic crack growth behavior for aluminum alloy 7050–t7451. Eng Fract Mech 196:98–112

    Article  Google Scholar 

  • Chen Q, Guo H, Avery K, Kang H, Su X (2018) Mixed-mode fatigue crack growth and life prediction of an automotive adhesive bonding system. Eng Fract Mech 189:439–450

    Article  Google Scholar 

  • Groover MP (2007) Fundamentals of modern manufacturing: materials processes, and systems. Wiley, New York

    Google Scholar 

  • Kim TY, Kim HK (2013) Mixed-mode fatigue crack growth behavior of fully lower bainite steel. Mater Sci Eng A 580:322–329

    Article  CAS  Google Scholar 

  • Kruzic J, McNaney J, Cannon R, Ritchie R (2004) Effects of plastic constraint on the cyclic and static fatigue behavior of metal/ceramic layered structures. Mech Mater 36(1–2):57–72

    Article  Google Scholar 

  • Kuna M, Roth S (2015) General remarks on cyclic cohesive zone models. Int J Fract 196(1–2):147–167

    Article  Google Scholar 

  • Lane M, Dauskardt RH, Vainchtein A, Gao H (2000) Plasticity contributions to interface adhesion in thin-film interconnect structures. J Mater Res 15(12):2758–2769

    Article  CAS  Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer Science & Business Media, Berlin

    Google Scholar 

  • Ma S, Zhang X, Recho N, Li J (2006) The mixed-mode investigation of the fatigue crack in cts metallic specimen. Int J Fatigue 28(12):1780–1790

    Article  CAS  Google Scholar 

  • McNaney J, Cannon R, Ritchie R (1996) Fracture and fatigue-crack growth along aluminum-alumina interfaces. Acta Mater 44(12):4713–4728

    Article  CAS  Google Scholar 

  • Needleman A (1990) An analysis of decohesion along an imperfect interface. Non-linear fracture. Springer, Dordrecht, pp 21–40

    Chapter  Google Scholar 

  • Needleman A (2018) Dynamic mode II crack growth along an interface between an elastic solid and a plastic solid. J Mech Phys Solids 120:22–35

    Article  Google Scholar 

  • Nguyen O, Repetto E, Ortiz M, Radovitzky R (2001) A cohesive model of fatigue crack growth. Int J Fract 110(4):351–369

    Article  Google Scholar 

  • Nijin I, Kumar RS, Banerjee A (2019) Role of stress-state on initiation and growth of a fatigue crack. Int J Fatigue 118:298–306

    Article  CAS  Google Scholar 

  • Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85(4):528–533

    Article  CAS  Google Scholar 

  • Roe K, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70(2):209–232

    Article  Google Scholar 

  • Roth S, Hütter G, Kuna M (2014) Simulation of fatigue crack growth with a cyclic cohesive zone model. Int J Fract 188(1):23–45

    Article  Google Scholar 

  • Roth S, Kuna M (2017) Prediction of size-dependent fatigue failure modes by means of a cyclic cohesive zone model. Int J Fatigue 100:58–67

    Article  Google Scholar 

  • Roychowdhury S, Dodds RH Jr (2003) A numerical investigation of 3-D small-scale yielding fatigue crack growth. Eng Fract Mech 70(17):2363–2383

    Article  Google Scholar 

  • Suresh S (1998) Fatigue of materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tvergaard V (2001) Resistance curves for mixed mode interface crack growth between dissimilar elastic-plastic solids. J Mech Phys Solids 49(11):2689–2703

    Article  Google Scholar 

  • Tvergaard V (2010) Effect of pure mode I, II or III loading or mode mixity on crack growth in a homogeneous solid. Int J Solids Struct 47(11–12):1611–1617

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6):1377–1397

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41(6):1119–1135

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1994) Toughness of an interface along a thin ductile layer joining elastic solids. Philos Mag A 70(4):641–656

    Article  CAS  Google Scholar 

  • Tvergaard V, Hutchinson JW (1996) On the toughness of ductile adhesive joints. J Mech Phys Solids 44(5):789–800

    Article  CAS  Google Scholar 

  • Varias A, Suo Z, Shih C (1991) Ductile failure of a constrained metal foil. J Mech Phys Solids 39(7):963–986

    Article  Google Scholar 

  • Wang B, Siegmund T (2005) A numerical analysis of constraint effects in fatigue crack growth by use of an irreversible cohesive zone model. Int J Fract 132(2):175–196

    Article  CAS  Google Scholar 

  • Wang B, Siegmund T (2005) Numerical simulation of constraint effects in fatigue crack growth. Int J Fatigue 27(10–12):1328–1334

    Article  CAS  Google Scholar 

  • Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech 6(2):A49–A53

    Google Scholar 

  • Xu Y, Yuan H (2009) On damage accumulations in the cyclic cohesive zone model for XFEM analysis of mixed-mode fatigue crack growth. Comput Mater Sci 46(3):579–585

    Article  CAS  Google Scholar 

  • Yang B, Mall S, Ravi-Chandar K (2001) A cohesive zone model for fatigue crack growth in quasibrittle materials. Int J Solids Struct 38(22–23):3927–3944

    Article  Google Scholar 

  • Zerres P, Vormwald M (2014) Review of fatigue crack growth under non-proportional mixed-mode loading. Int J Fatigue 58:75–83

    Article  Google Scholar 

  • Zhang W, Tabiei A (2018) Improvement of an exponential cohesive zone model for fatigue analysis. J Fail Anal Prevent 18(3):607–618

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge support from the Brazilian Government through CAPES and CNPq fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bittencourt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moresco, R., Bittencourt, E. Numerical study of fatigue crack growth considering an elastic–plastic layer in mixed-mode loading. Int J Fract 221, 39–52 (2020). https://doi.org/10.1007/s10704-019-00402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-019-00402-9

Keywords

Navigation