Skip to main content
Log in

Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Due to the rapid geographic spread of the Aedes mosquito and the increase in dengue incidence, dengue fever has been an increasing concern for public health authorities in tropical and subtropical countries worldwide. Significant challenges such as climate change, the burden on health systems, and the rise of insecticide resistance highlight the need to introduce new and cost-effective tools for developing public health interventions. Various and locally adapted statistical methods for developing climate-based early warning systems have increasingly been an area of interest and research worldwide. Costa Rica, a country with microclimates and endemic circulation of the dengue virus (DENV) since 1993, provides ideal conditions for developing projection models with the potential to help guide public health efforts and interventions to control and monitor future dengue outbreaks. Climate information was incorporated to model and forecast the dengue cases and relative risks using a Bayesian spatio-temporal model, from 2000 to 2021, in 32 Costa Rican municipalities. This approach is capable of analyzing the spatio-temporal behavior of dengue and also producing reliable predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

The code and datasets is available online under https://github.com/shuwei325/DengueCR_Bayesian_ST_Prediction.git

References

  • Akter R, Hu W, Gatton M, Bambrick H, Cheng J, Tong S (2021) Climate variability, socio-ecological factors and dengue transmission in tropical Queensland, Australia: a bayesian spatial analysis. Environ Res 195:110285

    Article  CAS  PubMed  Google Scholar 

  • Barboza LA, Chou-Chen S-W, Vásquez P, García YE, Calvo JG, Hidalgo HG, Sanchez F (2023) Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques. PLOS Negl Trop Dis 17(1):1–13. https://doi.org/10.1371/journal.pntd.0011047

    Article  Google Scholar 

  • Barrera R, Amador M, Clark GG (2006) Ecological factors influencing aedes aegypti (diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J Med Entomol 43(3):484–492

    Article  PubMed  Google Scholar 

  • Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–20. https://doi.org/10.1007/BF00116466

    Article  Google Scholar 

  • Bivand R, Gómez-Rubio V, Rue H (2015) Spatial data analysis with r-inla with some extensions. Journal of Statistical Software, 63 (20): 1–31, https://doi.org/10.18637/jss.v063.i20

  • Campbell KM, Haldeman K, Lehnig C, Munayco CV, Halsey ES, Laguna- Torres VA, Scott TW (2015) Weather regulates location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLoS Negl Trop Dis 9(7):e0003957

    Article  PubMed  PubMed Central  Google Scholar 

  • Chastel C (2012) Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions. Front Physiol 3:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Desjardins MR, Eastin MD, Paul R, Casas I, Delmelle EM (2020) Space-time conditional autoregressive modeling to estimate neighborhood-level risks for dengue fever in Cali, Colombia. Am J Trop Med Hyg 103(5):2040–2053

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieng H, Ahmad AH, Mahyoub JA, Turkistani AM, Mesed H, Koshike S et al (2012) Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of aedes aegypti (diptera: Culicidae) in Makkah city, Saudi arabia. Asian Pac J Trop Biomed 2(11):849–857

    Article  PubMed  PubMed Central  Google Scholar 

  • Eidson M, Kramer L, Stone W, Hagiwara Y, Schmit K et al (2001) Dead bird surveillance as an early warning system for west nile virus. Emerg Infect Dis 7(4):631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Mayer DA, Cid-Serrano L (1999) How ubiquitous is the dipole relationship in tropical atlantic sea surface temperatures? J Geophys Res Oceans 104(C4):7841–7848

    Article  Google Scholar 

  • European Centre for Disease Prevention and Control (2022). Vbornet-european network for arthropod vector surveillance for human public health. www.vbornet.eu. Accessed Aug 2022

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Michaelsen J (2015) The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data 2(1):150066

    Article  PubMed  PubMed Central  Google Scholar 

  • García YE, Chou-Chen S-W, Barboza LA, Daza–Torres ML, Montesinos-López JC, Vasquez P, et al (2023) Common patterns between dengue cases, climate, and local environmental variables in Costa Rica: A wavelet approach. PLOS glob public health 3(10): e0002417. https://doi.org/10.1371/journal.pgph.0002417

  • Gasparrini A (2011) Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 43(8):1–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasparrini A (2014) Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med 33(5):881–899. https://doi.org/10.1002/sim.5963

    Article  PubMed  Google Scholar 

  • Gasparrini A, Armstrong B, Kenward MG (2010) Distributed lag non-linear models. Stat Med 29(21):2224–2234. https://doi.org/10.1002/sim.3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger R (1954) Klassifikation der klimate nach w. köppen. landolt-börnstein zahlenwerte und funktionen aus physik, chemie, astronomie, geophysik und technik, alte serie, vol 3. Springer, Berlin, pp 603–607

  • Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102(477):359–378. https://doi.org/10.1198/016214506000001437

    Article  CAS  Google Scholar 

  • Gubler DJ (2012) The economic burden of dengue. Am J Trop Med and Hyg 86(5):743

    Article  Google Scholar 

  • Hidalgo HG, Alfaro EJ, Quesada-Montano B (2017) Observed (1970–1999) climate variability in central america using a high-resolution meteorological dataset with implication to climate change studies. Clim Change 141(1):13–28

    Article  Google Scholar 

  • Lopez LF, Amaku M, Coutinho FAB, Quam M, Burattini MN, Struchiner CJ, Massad E (2016) Modeling importations and exportations of infectious diseases via travelers. Bullet Math Biol 78(2):185–209

    Article  Google Scholar 

  • Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CA, Sá Carvalho M, Barcellos C (2011) Spatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput Geosci 37(3):371–381

    Article  Google Scholar 

  • Massad E, Amaku M, Coutinho FAB, Struchiner CJ, Burattini MN, Khan K, Wilder-Smith A (2018) Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  • Mateus JC, Carrasquilla G (2011) Predictors of local malaria outbreaks: an approach to the development of an early warning system in Colombia. Memórias Do Instituto Oswaldo Cruz 106:107–113

    Article  PubMed  Google Scholar 

  • Medlock JM, Avenell D, Barrass I, Leach S (2006) Analysis of the potential for survival and seasonal activity of aedes albopictus (diptera: Culicidae) in the United Kingdom. J Vector Ecol 31(2):292–304

    Article  PubMed  Google Scholar 

  • Messina JP, Brady OJ, Golding N, Kraemer MU, Wint G, Ray SE et al (2019) The current and future global distribution and population at risk of dengue. Nat Microbiol 4(9):1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ministerio de Salud (2022a). Sitio web del Ministerio de Salud de Costa rica. Bienvenido.https://www.ministeriodesalud.go.cr/

  • Ministerio de Salud (2022b). Sitio Web del Ministerio de Salud de costa rica. Bienvenido. https://www.ministeriodesalud.go.cr/index.php/biblioteca-dearchivos- left/documentos-ministerio-de-salud/material-informativo/materialpublicado/ boletines/boletines-vigilancia-vs-enfermedades-de-transmisionvectorial

  • Morin CW, Comrie AC, Ernst K (2013) Climate and dengue transmission: evidence and implications. Environ Health Perspect 121(11–12):1264–1272

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz E, Poveda G, Arbeláez MP, Vélez ID (2021) Spatiotemporal dynamics of dengue in Colombia in relation to the combined effects of local climate and enso. Acta Tropica 224:106136

    Article  PubMed  Google Scholar 

  • Murray NEA, Quam MB, Wilder-Smith A (2013) Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 5:299

    PubMed  PubMed Central  Google Scholar 

  • Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S (2014) Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 14(1):1–14

    Article  Google Scholar 

  • NOAA (2022) Climate prediction center. https://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii. Accessed: 01 May 2022

  • Outammassine A, Zouhair S, Loqman S (2022) Global potential distribution of three underappreciated arboviruses vectors (Aedes japonicus, Aedes vexans and Aedes vittatus) under current and future climate conditions. Transbound Emerg Dis 69(4):e1160–e1171

    Article  PubMed  Google Scholar 

  • Racloz V, Ramsey R, Tong S, Hu W (2012) Surveillance of dengue fever virus: a review of epidemiological models and early warning systems. PLoS Neglect Trop Dis 6(5):e1648

    Article  Google Scholar 

  • Romi R, Severini F, Toma L (2006) Cold acclimation and overwintering of female Aedes albopictus in Roma. J Am Mosq Control Assoc 22(1):149–151

    Article  PubMed  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate bayesian inference for latent Gaussian models by using integrated nested laplace approximations. J Royal Stat Soc Ser B ( Methodol ) 71(2):319–392

    Article  Google Scholar 

  • Rueda L, Patel K, Axtell R, Stinner R (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and I (diptera: Culicidae). J Med Entomol 27(5):892–898

    Article  CAS  PubMed  Google Scholar 

  • Sarfraz MS, Tripathi NK, Tipdecho T, Thongbu T, Kerdthong P, Souris M (2012) Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health 12(1):1–19

    Article  Google Scholar 

  • Tuck SL, Phillips HR, Hintzen RE, Scharlemann JP, Purvis A, Hudson LN (2014) Modistools -downloading and processing modis remotely sensed data in R. Ecol Evol 4(24):4658–4668. https://doi.org/10.1002/ece3.1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Tun-Lin W, Burkot T, Kay B (2000) Effects of temperature and larval diet on development rates and survival of the dengue vector aedes aegypti in north Queensland, Australia. Med Vet Entomol 14(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Van Benthem BH, Vanwambeke SO, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Somboon P (2005) Spatial patterns of and risk factors for seropositivity for dengue infection. Am J Trop Med Hyg 72(2):201–208

    Article  PubMed  Google Scholar 

  • Vásquez P, Loría A, Sanchez F, Barboza LA (2020) Climate-driven statistical models as effective predictors of local dengue incidence in Costa Rica: a generalized additive model and random forest approach. Revista de Matematica: Teoria y Aplicaciones 27(1):1–21

    Google Scholar 

  • Wang H, Zhao S, Wang S, Zheng Y, Wang S, Chen H, Chen Y (2022) Global magnitude of encephalitis burden and its evolving pattern over the past 30 years. J Infect 84(6):777–787

    Article  PubMed  Google Scholar 

  • Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. (1987). Effect of temperature on the vector efficiency of aedes aegypti for dengue 2 virus. Am J Trop Med 36(1):143-152. https://doi.org/10.4269/ajtmh.1987.36.143

    CAS  Google Scholar 

  • Wen T-H, Lin NH, Lin C-H, King C-C, Su M-D (2006) Spatial mapping of temporal risk characteristics to improve environmental health risk identification: a case study of a dengue epidemic in Taiwan. Sci Total Environ 367(2–3):631–640

    Article  CAS  PubMed  Google Scholar 

  • Winkler RL, Murphy AH (1968) “Good’’ probability assessors. J Appl Meteorol Climatol 7(5):751–758. https://doi.org/10.1175/1520-0450(1968)007.0751:PA.2.0.CO;2

    Article  Google Scholar 

  • World Health Organization (2022). Dengue and sever dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severedengue. Accessed Aug 2022

  • Yang X, Quam MB, Zhang T, Sang S (2021) Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med 28(8):146

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

S.W.C. proposed the main conceptual ideas, performed formal analysis, results validations and writing original draft preparation. L.A.B. worked out in data curation, formal analysis, and writing original draft preparation. P.V. helped with the writing original draft preparation and the public health contextualization. Y.E.G. work out in the original writing draft. J.G.C. helped write a review and editing the final version. H.G.H. work out in writing, review and editing. And F.S. supervises the research team and works out in writing, review and editing the final version.

Corresponding author

Correspondence to Shu Wei Chou-Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Luiz Duczmal.

Appendices

Appendix 1

Naïve methods’ predictive metrics of the testing period (from January to March 2021)

Table 4 Predictive metrics of testing data set of the naïve forecasting and negative binomial null model

Appendix 2

Dengue cases modelling and prediction (see Figs. 8, 9).

Fig. 8
figure 8

Observed (black) and 95% posterior predictive dengue cases (red) over the training period. Upper six panels: best municipalities according to NIS metric. Lower three panels: worst municipalities according to NIS metric

Fig. 9
figure 9

Observed (black) and 95% posterior predictive dengue cases (red) over the testing period. Upper six panels: best municipalities according to NIS metric. Lower three panels: worst municipalities according to NIS metric

Appendix 3

Relative risk prediction maps in 2002, 2011 and 2020 (see Figs. 10, 11, 12).

Fig. 10
figure 10

Posterior mean of relative risks from January to December 2002 for 81 municipalities in Costa Rica

Fig. 11
figure 11

Posterior mean of relative risks from January to December 2011 for 81 municipalities in Costa Rica

Fig. 12
figure 12

Posterior mean of relative risks from January to December 2020 for 81 municipalities in Costa Rica

Appendix 4

Absolute percentage error maps in 2002, 2011 and 2020 (see Figs. 13, 14, 15)

Fig. 13
figure 13

Absolute percentage error from January to December 2002 for 81 municipalities in Costa Rica

Fig. 14
figure 14

Absolute percentage error from January to December 2011 for 81 municipalities in Costa Rica

Fig. 15
figure 15

Absolute percentage error from January to December 2020 for 81 municipalities in Costa Rica

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou-Chen, S.W., Barboza, L.A., Vásquez, P. et al. Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica. Environ Ecol Stat 30, 687–713 (2023). https://doi.org/10.1007/s10651-023-00580-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-023-00580-9

Keywords

Mathematics Subject Classification

Navigation