Skip to main content
Log in

Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The original algorithm of D.V. Chudnovsky and G.V. Chudnovsky for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear with respect to the degree of the extension. Recently, Randriambololona generalized the method, allowing asymmetry in the interpolation procedure. The aim of this article is to make effective this method. We first make explicit this generalization in order to construct the underlying asymmetric algorithms. Then, we propose a generic strategy to construct these algorithms using places of higher degrees and without derivated evaluation. Finally, we provide examples of three multiplication algorithms along with their Magma implementation: in \(\mathbb {F}_{16^{13}}\) using only rational places, in \(\mathbb {F}_{4^{5}}\) using also places of degree two, and in \(\mathbb {F}_{2^{5}}\) using also places of degree four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atighehchi K., Ballet S., Bonnecaze A., Rolland R.: On Chudnovsky-based arithmetic algorithms in finite fields. Math. Comput. 86(308), 2975–3000 (2017).

    Article  MATH  Google Scholar 

  2. Ballet S., Chaumine J., Pieltant J., Rambaud M., Randriambololona H., Rolland R.: On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry, Uspekhi Mathematichskikh Nauk (Russian Math. Surveys), 76:1, 31–94 (29–89) (2021)

  3. Ballet S., Chaumine J., Pieltant J.: Shimura modular curves and asymptotic symmetric tensor rank of multiplication in any finite field. In: Proceedings of the conference algebraic informatics, Lecture Notes in Computer Science, 8080, Springer, Heidelberg, 160–172 (2013)

  4. Ballet S., Le Brigand D., Rolland R.: On an application of the definition field descent of a tower of function fields. Arithmetics, geometry, and coding theory (AGCT 2005), 187-203, Sémin. Congr., 21, Soc. Math. France, Paris (2010)

  5. Ballet S., Rolland R.: Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound. In: Actes de la Conférence “Théorie des Nombres et Applications”, 5-18, Publ. Math. Besançon Algèbre Théorie Nr., Presses Univ. Franche-Comté, Besançon (2011).

  6. Ballet S.: Curves with many points and multiplication complexity in any extension of \(_{q}\). Finite Fields Their Appl. 5(4), 364–377 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ballet S.: Quasi-optimal algorithms for multiplication in the extensions of \(_{16}\) of degree \(13, 14 \text{ and } 15\). J. Pure Appl. Algebra 171(2–3), 149–164 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ballet S., Le Brigand D.: On the existence of non special divisor of degree \(g\) and \(g-1\) in algebraic function fields over \(_{q}\). J. Number Theory 116, 293–310 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. Ballet S., Pieltant J.: On the tensor rank of multiplication in any extension of \( _{2} \). J. Complex. 27, 230–245 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. Ballet S., Rolland R.: Multiplication algorithm in a finite field and tensor rank of the multiplication. J. Algebra 272(1), 173–185 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ballet S., Ritzenthaler C., Rolland R.: On the existence of dimension zero divisors in algebraic function fields defined over \(_q\). Acta Arithmetica 143(4), 377–392 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ballet S., Bonnecaze A., Tukumuli M.: On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields. J. Algebra Its Appl. 15(1), 1650005 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. Baum U., Shokrollahi M.A.: An optimal algorithm for multiplication in\(_{256}/ _{4} \). Appl. Algebra Eng. Commun. Comput. 2, 15–20 (1991).

    Article  MATH  Google Scholar 

  14. Bosma W., Cannon J., Playoust C.: The Magma Algebra System I. The user language. Journal of Symbolic Computation 24 3–4, 235–265 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. Bshouty N.H.: Multilinear complexity is equivalent to optimal tester size. Electronic Colloquium on Computational Complexity, Report No11 (2013)

  16. Cenk M., Özbudak F.: On multiplication in finite fields. J. Complex. 26, 172–186 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Chudnovsky D.V., Chudnovsky G.V.: Algebraic complexities and algebraic curves over finite fields. J. Complex. 4, 285–316 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  18. Ihara Y.: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 721–724 (1982).

    MathSciNet  MATH  Google Scholar 

  19. Julia P.: Tours de corps de fonctions algébriques et rang de tenseur de la multiplication dans les corps finis. PhD of Université d’Aix-Marseille, Institut de Mathématiques de Luminy (2012).

  20. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, p. 20. Cambridge University Press, Cambridge (2000).

    Google Scholar 

  21. Pieltant J., Randriambololona H.: New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields. Math. Comput. 84, 2023–2045 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. Randriambololona H.: Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method. J. Complex. 28, 489–517 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. Serre J.-P.: Sur le nombre de points rationnels d’une courbe algébrique sur un corps fini. C. R. Acad. Sci. Paris, Sér. I Math 296.6, 397–402 (1983).

    MATH  Google Scholar 

  24. Shabat G. V.: Curves with many points. PhD Thesis, Amsterdam (2001)

  25. Shparlinski I., Tsfasman M., Vladut S.: Curves with many points and multiplication in finite fields. In: H. Stichtenoth, M.A. Tsfasman (eds) Coding Theory and Algebraic Geometry, number 1518 in Lectures Notes in Mathematics, pages 145–169, Berlin, 1992. Springer. Proceedings of AGCT-3 conference (1991) Luminy.

  26. Stichtenoth H.: Algebraic Function Fields and Codes. Springer, Berlin (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Bonnecaze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless”.

Magma implementation of the multiplication algorithms in the finite fields

Magma implementation of the multiplication algorithms in the finite fields

Appendix A gives a Magma implementation for each of the examples of Sects. 4 to 6.

1.1 \(\mathbb {F}_{16^{13}}\) over \(\mathbb {F}_{16}\)

figure c

1.2 \(\mathbb {F}_{4^{5}}\) over \(\mathbb {F}_{4}\)

figure d

1.3 \(\mathbb {F}_{2^{5}}\) over \(\mathbb {F}_{2}\)

figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballet, S., Baudru, N., Bonnecaze, A. et al. Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields. Des. Codes Cryptogr. 90, 2783–2811 (2022). https://doi.org/10.1007/s10623-021-00986-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00986-1

Keywords

Mathematics Subject Classification

Navigation