Skip to main content
Log in

Fisetin Imparts Neuroprotection in Experimental Diabetic Neuropathy by Modulating Nrf2 and NF-κB Pathways

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The current study is aimed to assess the therapeutic potential of fisetin, a phytoflavonoid in streptozotocin (STZ)-induced experimental diabetic neuropathy (DN) in rats. Fisetin was administered (5 and 10 mg/kg) for 2 weeks (7th and 8th week) post STZ administration. Thermal and mechanical hyperalgesia were assessed by measuring tactile sensitivity to thermal and mechanical stimuli, respectively. Motor nerve conduction velocity (MNCV) was determined using power lab system and sciatic nerve blood flow (NBF) was determined using laser Doppler system. Nerve sections were processed for TUNEL assay and NF-κB, COX-2 immunohistochemical staining. Sciatic nerve homogenate was used for biochemical and Western blotting analysis. MNCV and sciatic NBF deficits associated with DN were ameliorated in fisetin administered rats. Fisetin treatment reduced the interleukin-6 and tumour necrosis factor-alpha in sciatic nerves of diabetic rats (p < 0.001). Protein expression studies have identified that the therapeutic benefit of fisetin might be through regulation of redox sensitive transcription factors such as nuclear erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB). Our study provides an evidence for the therapeutic potential of fisetin in DN through simultaneous targeting of NF-κB and Nrf2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arora M, Kumar A, Kaundal RK, Sharma SS (2008) Amelioration of neurological and biochemical deficits by peroxynitrite decomposition catalysts in experimental diabetic neuropathy. Eur J Pharmacol 596(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Cameron NE (2013) Role of endoplasmic reticulum stress in diabetic neuropathy. Diabetes 62(3):696–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 9(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Cameron NE, Cotter MA, Low PA (1991) Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 261(1):E1–E8

    CAS  PubMed  Google Scholar 

  • Chopra K, Tiwari V, Arora V, Kuhad A (2010) Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 11(10):950–957

    Article  CAS  PubMed  Google Scholar 

  • Coppey LJ, Davidson EP, Dunlap JA, Lund DD, Yorek MA (2000) Slowing of motor nerve conduction velocity in streptozotocin-induced diabetic rats is preceded by impaired vasodilation in arterioles that overlie the sciatic nerve. J Diabetes Res 1(2):131–143

    CAS  Google Scholar 

  • Huizinga MM, Peltier A (2007) Painful diabetic neuropathy: a management-centered review. Clin Diabetes 25(1):6–15

    Article  Google Scholar 

  • Jensen TS, Backonja M-M, Jimenez SH, Tesfaye S, Valensi P, Ziegler D (2006) New perspectives on the management of diabetic peripheral neuropathic pain. Diab Vasc Dis Res 3(2):108–119

    Article  PubMed  Google Scholar 

  • Joshi RP, Negi G, Kumar A, Pawar YB, Munjal B, Bansal AK, Sharma SS (2013) SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection. Nanomedicine 9(6):776–785

    CAS  PubMed  Google Scholar 

  • Kumar A, Kaundal RK, Iyer S, Sharma SS (2007) Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci 80(13):1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Negi G, Sharma SS (2012) Suppression of NF-kB and NF-kB regulated oxidative stress and neuroinflammation by BAY 11-7082 (IkB phosphorylation inhibitor) in experimental diabetic neuropathy. Biochimie 94(5):1158–1165

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Negi G, Sharma SS (2013) Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Curr Med Chem 20(36):4640–4645

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma SS (2010) NF-kappaB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 394(2):360–365. doi:10.1016/j.bbrc.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  • Leinninger GM, Edwards JL, Lipshaw MJ, Feldman EL (2006) Mechanisms of disease: mitochondria as new therapeutic targets in diabetic neuropathy. Nat Clin Pract Neurol 2(11):620–628

    Article  CAS  PubMed  Google Scholar 

  • Lewis KN, Mele J, Hayes JD, Buffenstein R (2010) Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol 50(5):829–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan D, Xi Q, Pfeffer LM, Jaggar JH (2010) Mitochondria control functional CaV1. 2 expression in smooth muscle cells of cerebral arteries. Circ Res 107(5):631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narenjkar J, Roghani M, Alambeygi H, Sedaghati F (2011) The effect of the flavonoid quercetin on pain sensation in diabetic rats. Basic Clin Neurosci 2(3):51–57

    Google Scholar 

  • Negi G, Kumar A, Joshi RP, Sharma SS (2011a) Oxidative stress and Nrf2 in the pathophysiology of diabetic neuropathy: old perspective with a new angle. Biochem Biophys Res Commun 408(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Negi G, Kumar A, Sharma SS (2011b) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-kB and Nrf2 cascades. J Pineal Res 50(2):124–131

    CAS  PubMed  Google Scholar 

  • Obrosova IG (2009) Diabetes and the peripheral nerve. Biochim Biophys Acta 1792(10):931–940

    Article  CAS  PubMed  Google Scholar 

  • Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A (2014) Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014:1–10

    Article  Google Scholar 

  • Saponara S, Carosati E, Mugnai P, Sgaragli G, Fusi F (2011) The flavonoid scaffold as a template for the design of modulators of the vascular Cav1. 2 channels. Br J Pharmacol 164(6):1684–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kishore L, Kaur N (2014) Diabetic peripheral neuropathy: current perspective and future directions. Pharmacol Res 80:21–35

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang X, Chen T, Li T, Cao K, Lu A, Chen Y, Sun D, Luo J, Fan J (2010) Myelin activates FAK/Akt/NF-kB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One. doi:10.1371/journal.pone.0009380

    Google Scholar 

  • Tak PP, Firestein GS (2001) NF-kB: a key role in inflammatory diseases. J Clin Invest 107(1):7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavee J, Zhou L (2009) Small fiber neuropathy: a burning problem. Clevel Clin J Med 76(5):297–305

    Article  Google Scholar 

  • Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. J Biomark. doi:10.1155/2013/378790

    PubMed  PubMed Central  Google Scholar 

  • Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13(11):1649–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler G, Kempler P (2010) Pathomechanism of diabetic neuropathy: background of the pathogenesis-oriented therapy. Orv Hetil 151(24):971–981

    Article  PubMed  Google Scholar 

  • Wu S-N, Chen B-S, Hsu C-L, Peng H (2008) The large-conductance Ca 2-activated K+ channel: A target for the modulators of estrogen receptors. Curr Top Biochem Res 10(2):93–101

    CAS  Google Scholar 

  • Wu SN, Chiang HT, Shen AY, Lo YK (2003) Differential effects of quercetin, a natural polyphenolic flavonoid, on L-Type calcium current in pituitary tumor (GH3) cells and neuronal NG108-15 cells. J Cell Physiol 195(2):298–308

    Article  CAS  PubMed  Google Scholar 

  • Yerra VG, Negi G, Sharma SS, Kumar A (2013) Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-kB pathways in diabetic neuropathy. Redox Biol 1(1):394–397

    Article  Google Scholar 

  • Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the Department of Pharmaceuticals, Ministry of Chemical and fertilizers, Government of India for carrying out this work. The authors would also like to acknowledge the support of NIPER-Hyderabad for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandireddy, R., Yerra, V.G., Komirishetti, P. et al. Fisetin Imparts Neuroprotection in Experimental Diabetic Neuropathy by Modulating Nrf2 and NF-κB Pathways. Cell Mol Neurobiol 36, 883–892 (2016). https://doi.org/10.1007/s10571-015-0272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0272-9

Keywords

Navigation