Skip to main content
Log in

Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The main purpose of this work was to obtain durable antimicrobial cotton textiles functionalized with l-cysteine (Cys) and silver nanoparticles (Ag NPs). Cys molecules were covalently linked to cotton fibers via esterification with the cellulose hydroxyl groups, and the Ag NPs tightly adhered to the fiber surface via coordination bonds with the Cys thiol groups. As a result, the Ag NPs coating on the cotton fabric showed an excellent antibacterial function with an outstanding laundering durability. Even after 90 consecutive laundering tests, the modified cotton fabrics still showed satisfactory bacterial reduction rates against both Staphylococcus aureus and Escherichia coli, and the rates were are all higher than 94%. These findings will allow for broader applications of antimicrobial cotton textiles with a decreased safety risk and lower environmental impact due to the Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    Article  CAS  Google Scholar 

  • Ali A, Suhail M, Mathew S, Shah MA, Harakeh SM, Ahmad S, Kazmi Z, Alhamdan MA, Chaudhary A, Damanhouri GA, Qadri I (2016) Nanomaterial induced immune responses and cytotoxicity. J Nanosci Nanotechnol 16:40–57

    Article  CAS  Google Scholar 

  • Altinisik A, Bozaci E, Akar E, Seki Y, Yurdakoc K, Demir A, Özdogan E (2013) Development of antimicrobial cotton fabric using bionanocomposites. Cellulose 20:3111–3121

    Article  CAS  Google Scholar 

  • Azodi M, Sultan Y, Ghoshal S (2016) Dissolution behavior of silver nanoparticles and formation of secondary silver nanoparticles in municipal wastewater by single-particle ICP-MS. Environ Sci Technol 50:13318–13327

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135

    Article  CAS  Google Scholar 

  • Chen S, Chen S, Jiang S, Xiong M, Luo J, Tang J, Ge Z (2011) Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine. ACS Appl Mater Interfaces 3:1154–1162

    Article  CAS  Google Scholar 

  • Chen S, Yuan L, Li Q, Li J, Zhu X, Jiang Y, Sha O, Yang XH, Xin JH, Wang JX, Stadler FJ, Huang P (2016) Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small 12:3516–3521

    Article  CAS  Google Scholar 

  • Eremenko AM, Petrik IS, Smirnova NP, Rudenko AV, Marikvas YS (2016) Antibacterial and antimycotic activity of cotton fabrics, impregnated with silver and binary silver/copper nanoparticles. Nanoscale Res Lett 11:1–9

    Article  CAS  Google Scholar 

  • Fan WC, Zhu YH, Xi GH, Huang MQ, Liu XD (2016) Wear-resistant cotton fabrics modified by PU coatings prepared via mist polymerization. J Appl Polym Sci 133:43024

    Google Scholar 

  • Feng JC, Hontanon E, Blanes M, Meyer J, Guo XA, Santos L, Kruis FE (2016) Scalable and environmentally benign process for smart textile nanofinishing. ACS Appl Mater Interfaces 8:14756–14765

    Article  Google Scholar 

  • Fouda MMG, Abdel-Halim ES, Al-Deyab SS (2013) Antibacterial modification of cotton using nanotechnology. Carbohydr Polym 92:943–954

    Article  CAS  Google Scholar 

  • Francesko A, Blandón L, Vázquez M, Petkova P, Stoyanova P, Morató Farreras J, Tzanov T (2015) Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles. ACS Appl Mater Interfaces 7:9792–9799

    Article  CAS  Google Scholar 

  • Fu FY, Gu JY, Xu X, Xiong QX, Zhang YY, Liu XD, Zhou JP (2017) Interfacial assembly of ZnO–cellulose nanocomposite films via a solution process: a one-step biomimetic approach and excellent photocatalytic properties. Cellulose 24:147–162

    Article  CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72

    Article  CAS  Google Scholar 

  • Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  Google Scholar 

  • Giannossa LC, Longano D, Ditaranto N, Nitti MA, Paladini F, Pollini M, Cioffi N (2013) Metal nanoantimicrobials for textile applications. Nanotechnol Rev 2:307–331

    Article  CAS  Google Scholar 

  • Goli KK, Gera N, Liu X, Rao B, Rojas OJ, Genzer J (2013) Generation and properties of antibacterial coatings based on electrostatic attachment of silver nanoparticles to protein-coated polypropylene fibers. ACS Appl Mater Interfaces 5:5298–5306

    Article  CAS  Google Scholar 

  • Gorjanc M, Sala M (2016) Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes. Cellulose 23:2199–2209

    Article  CAS  Google Scholar 

  • Gouveia IC, Sá D, Henriques M (2012) Functionalization of wool with l-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124:1352–1358

    Article  CAS  Google Scholar 

  • Ibrahim NA, Eid BM, Abou Elmaaty TM, El-Aziz EA (2013) A smart approach to add antibacterial functionality to cellulosic pigment prints. Carbohydr Polym 94:612–618

    Article  CAS  Google Scholar 

  • Jiang T, Liu L, Yao JM (2011) In situ deposition of silver nanoparticles on the cotton fabrics. Fiber Polym 12:620–625

    Article  CAS  Google Scholar 

  • Kang CK, Kin SS, Kim S, Lee J, Lee JH, Roh C, Lee J (2016) Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts. Carbohydr Polym 151:1012–1018

    Article  CAS  Google Scholar 

  • Klemencic D, Tomsic B, Kovac F, Simoncic B (2012) Antimicrobial cotton fibres prepared by in situ synthesis of AgCl into a silica matrix. Cellulose 19:1715–1729

    Article  CAS  Google Scholar 

  • Liu HJ, Lee YY, Norsten TB, Chong KR (2014a) In situ formation of anti-bacterial silver nanoparticles on cotton textiles. J Ind Text 44:198–210

    Article  CAS  Google Scholar 

  • Liu H, Lv M, Deng B, Li J, Yu M, Huang Q, Fan C (2014b) Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. Sci Rep 4:5920

    Article  Google Scholar 

  • Liu Y, Ren X, Liang J (2015) Antibacterial modification of cellulosic materials. BioResources 10:1964–1985

    CAS  Google Scholar 

  • Lu YY, Zhang YY, Zhang J, Shi Y, Li Z, Feng ZC, Li C (2016) In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance. Appl Surf Sci 370:312–319

    Article  CAS  Google Scholar 

  • Luo GY, Xi GH, Wang XY, Qin DD, Zhang YY, Fu FY, Liu XD (2017) Antibacterial N-halamine coating on cotton fabric fabricated using mist polymerization. J Appl Polym Sci 134:44897

    Google Scholar 

  • Manna J, Goswami S, Shilpa N, Sahu N, Rana RK (2015) Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: application as self-cleaning flexible materials with visible-light photocatalysis and antibacterial activities. ACS Appl Mater Interfaces 7:8076–8082

    Article  CAS  Google Scholar 

  • Miller KP, Wang L, Benicewicz BC, Decho AW (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44:7787–7807

    Article  CAS  Google Scholar 

  • Mohamed AL, Hassabo AG, Shaarawy S, Hebeish A (2017) Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and Ag NPs in cotton structure pre-treated with periodate. Carbohydr Polym 178:251–259

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012a) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloid Surface B 89:196–202

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012b) In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr Polym 87:1706–1712

    Article  CAS  Google Scholar 

  • Morais DS, Guedes RM, Lopes MA (2016) Antimicrobial approaches for textiles: from research to market. Materials 9:498

    Article  Google Scholar 

  • Nam S, Condon BD, Delhom CD, Fontenot KR (2016) Silver-cotton nanocomposites: nano-design of microfibrillar structure causes morphological changes and increased tenacity. Sci Rep 6:37320

    Article  Google Scholar 

  • Nogueira F, Teixeira P, Gouveia IC (2018) Electrospinning polypropylene with an amino acid as a strategy to bind the antimicrobial peptide Cys-LC-LL-37. J Mater Sci 53:4655–4664

    Article  CAS  Google Scholar 

  • Rehan M, El-Naggar ME, Mashaly HM, Wilken R (2018) Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr Polym 182:29–41

    Article  CAS  Google Scholar 

  • Robertson TA, Sanchez WY, Roberts MS (2010) Are commercially available nanoparticles safe when applied to the skin? J Biomed Nanotechnol 6:452–468

    Article  CAS  Google Scholar 

  • Sadanand V, Rajini N, Rajulu AV, Satyanarayana B (2016) Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr Polym 150:32–39

    Article  CAS  Google Scholar 

  • Shahid UI, Butola BS, Mohammad F (2016) Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Adv 6:44232–44247

    Article  Google Scholar 

  • Shahidi S, Rashidi A, Ghoranneviss M, Anvari A, Rahimi MK, Moghaddam MB, Wiener J (2010) Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma. Cellulose 17:627–634

    Article  CAS  Google Scholar 

  • Sun G, Worley SD (2015) Chemistry of durable and regenerable biocidal textiles. J Chem Educ 82:60–64

    Article  Google Scholar 

  • Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers H, Simoncic A, Samardžija Z, Samardzija Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626

    Article  CAS  Google Scholar 

  • Wagener S, Dommershausen N, Jungnickel H, Laux P, Mitrano D, Nowack B, Schneider G, Luch A (2016) Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environ Sci Technol 50:5927–5934

    Article  CAS  Google Scholar 

  • Wan SJ, Wang L, Xu XJ, Zhao CH, Liu XD (2014) Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface. Soft Matter 10:903–910

    Article  CAS  Google Scholar 

  • Wang L, Xi GH, Wan SJ, Zhao CH, Liu XD (2014) Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21:2983–2994

    Article  CAS  Google Scholar 

  • Wang P, Wang Q, Huang J, Li N, Gu Y (2017) A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells. Biosens Bioelectron 92:583–588

    Article  CAS  Google Scholar 

  • Wu L, Xu Y, Cai L, Zang X, Li Z (2014) Synthesis of a novel multi N-halamines siloxane precursor and its antimicrobial activity on cotton. Appl Surf Sci 314:832–840

    Article  CAS  Google Scholar 

  • Wu M, Ma B, Pan T, Chen S, Sun J (2016) Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties. Adv Funct Mater 26:569–576

    Article  CAS  Google Scholar 

  • Xi GH, Fan WC, Wang L, Liu XD, Endo T (2015a) Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2-trifluoroethyl methacrylate. J Polym Sci Pol Chem 53:1862–1871

    Article  CAS  Google Scholar 

  • Xi GH, Xiu YL, Wang L, Liu XD (2015b) Antimicrobial N-halamine coatings synthesized via vapor-phase assisted polymerization. J Appl Polym Sci 132:41824

    Article  Google Scholar 

  • Xi GH, Wang J, Luo GY, Zhu YH, Fan WC, Huang MQ, Liu XD (2016) Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization. Cellulose 23:915–927

    Article  CAS  Google Scholar 

  • Xu H, Shi X, Ma H, Lv YH, Zhang LP, Mao ZP (2011) The preparation and antibacterial effects of dopa-cotton/AgNPs. Appl Surf Sci 257:6799–6803

    Article  CAS  Google Scholar 

  • Xu QB, Wu YH, Zhang YY, Fu FY, Liu XD (2016) Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder. Fiber Polym 17:1782–1789

    Article  CAS  Google Scholar 

  • Xu QB, Xie LJ, Diao H, Li F, Zhang YY, Fu FY, Liu XD (2017a) Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym 177:187–193

    Article  CAS  Google Scholar 

  • Xu S, Zhang F, Yao L, Zhu C, Morikawa H, Chen Y (2017b) Eco-friendly fabrication of antibacterial cotton fibers by the cooperative self-assembly of hyperbranched poly (amidoamine)-and hyperbranched poly (amine-ester)-functionalized silver nanoparticles. Cellulose 24:1493–1509

    Article  CAS  Google Scholar 

  • Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Yun SH (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068

    Article  CAS  Google Scholar 

  • Yue XX, Lin HT, Yan T, Zhang DS, Lin H, Chen YY (2014) Synthesis of silver nanoparticles with sericin and functional finishing to cotton fabrics. Fiber Polym 15:716–722

    Article  CAS  Google Scholar 

  • Zhang F, Wu X, Chen Y, Lin H (2009) Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fiber Polym 10:496–501

    Article  CAS  Google Scholar 

  • Zhang D, Chen L, Zang C, Chen Y, Lin H (2013) Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydr Polym 92:2088–2094

    Article  CAS  Google Scholar 

  • Zhang YY, Xu QB, Fu FY, Liu XD (2016) Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose 23:2791–2808

    Article  CAS  Google Scholar 

  • Zhao R, Lv M, Li Y, Sun M, Kong W, Wang L, Sun Y (2017) Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Interfaces 9:15328–15341

    Article  CAS  Google Scholar 

  • Zheng Y, Cai C, Zhang F, Monty J, Linhardt RJ, Simmons TJ (2016) Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology 27:055102

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by Public Welfare Technology Application Research Project of Zhejiang Province (2017C31035) and the Natural Science Foundation of China (51573167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangDong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Ke, X., Cai, D. et al. Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect. Cellulose 25, 2129–2141 (2018). https://doi.org/10.1007/s10570-018-1689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1689-3

Keywords

Navigation