Skip to main content

Advertisement

Log in

Basic concepts, current evidence, and future potential for gene therapy in managing cutaneous wounds

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

Several studies have investigated the role of gene therapy in the healing process. The aim of this review is to explain the gene delivery systems in wound area.

Results

Ninety-two studies were included and comprehensively overviewed. We described the importance of viral vectors such as adenoviruses, adeno-associated viruses, and retroviruses, and conventional non-viral vectors such as naked DNA injections, liposomes, gene gun, electroporation, and nanoparticles in achieving high-level expression of genes. Application of viral transfection, liposomal vectors, and electroporation were the main gene delivery systems. Genes encoding for growth factors or cytokines have been shown to result in a better wound closure in comparison to application of the synthetic growth factors. In addition, a combination of stem cell and gene therapy has been found an effective approach in regeneration of cutaneous wounds.

Conclusions

This article gives an overview of the methods and investigations applied on gene therapy in wound healing. However, clinical investigations need to be undertaken to gain a better understanding of gene delivery technologies and their roles in stimulating wound repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bouard D, Alazard-Dany N, Cosset FL (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157:153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branski L, Pereira C, Herndon D et al (2007) Gene therapy in wound healing: present status and future directions. Gene Ther 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Branski LK, Gauglitz GG, Herndon DN et al (2009) A review of gene and stem cell therapy in cutaneous wound healing. Burns 35:171–180

    Article  PubMed  Google Scholar 

  • Branski L, Masters O, Herndon D et al (2010) Pre-clinical evaluation of liposomal gene transfer to improve dermal and epidermal regeneration. Gene Ther 17:770–778

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tan Q, Liang Z et al (2005) Observation of the grafting of platelet-derived growth factor gene-modified artificial composite skin on rat wounds. Zhonghua Shao Shang Za Zhi 21:33–36

    CAS  PubMed  Google Scholar 

  • Chesnoy S, Huang L (2002) Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution. Mol Ther 5:57–62

    Article  CAS  PubMed  Google Scholar 

  • Chirmule N, Propert K, Magosin S et al (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 6:1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar N, Abdullah R, Shamsabadi FT et al (2013) PAMAM dendrimer roles in gene delivery methods and stem cell research. Cell Biol Int 37:415–419

    Article  CAS  PubMed  Google Scholar 

  • Deodato B, Arsic N, Zentilin L et al (2002) Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 9:777

    Article  CAS  PubMed  Google Scholar 

  • Di Peppe SR, Mangoni A, Zambruno G et al (2002) Adenovirus-mediated VEGF165 gene transfer enhances wound healing by promoting angiogenesis in CD1 diabetic mice. Gene Ther 9:1271

    Article  CAS  Google Scholar 

  • Dileo J, Miller TE Jr, Chesnoy S et al (2003) Gene transfer to subdermal tissues via a new gene gun design. Hum Gene Ther 14:79–87

    Article  CAS  PubMed  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2004) Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 4:1373–1386

    Article  CAS  PubMed  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2007) Gene therapy and wound healing. Clin Dermatol 25:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Escámez MJ, Carretero M, García M et al (2008) Assessment of optimal virus-mediated growth factor gene delivery for human cutaneous wound healing enhancement. J Invest Dermatol 128:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Gardlík R, Pálffy R, Hodosy J et al (2005) Vectors and delivery systems in gene therapy. Med Sci Monit 11:RA110–RA121

    PubMed  Google Scholar 

  • Gordon A, Kozin ED, Keswani SG et al (2008) Permissive environment in postnatal wounds induced by adenoviral-mediated overexpression of the anti-inflammatory cytokine interleukin-10 prevents scar formation. Wound Repair Regen 16:70–79

    Article  PubMed  Google Scholar 

  • Gothelf A, Eriksen J, Hojman P et al (2010) Duration and level of transgene expression after gene electrotransfer to skin in mice. Gene Ther 17:839–845

    Article  CAS  PubMed  Google Scholar 

  • Gu D, Atencio I, Kang DW et al (2005) Recombinant adenovirus-p21 attenuates proliferative responses associated with excessive scarring. Wound Repair Regen 13:480–490

    Article  PubMed  Google Scholar 

  • Guo S, Donate A, Basu G et al (2011) Electro-gene transfer to skin using a noninvasive multielectrode array. J Control Release 151:256–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha X-q, Lü T-d, Ling H et al (2010) Effects of mesenchymal stem cells transfected with human hepatocyte growth factor gene on healing of burn wounds. Chin J Traumatol 13:349–355

    CAS  PubMed  Google Scholar 

  • Haigh O, Depelsenaire AC, Meliga SC et al (2014) CXCL1 gene silencing in skin using liposome-encapsulated siRNA delivered by microprojection array. J Control Release 194:148–156

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Wang J, Zou Z et al (2009) Transplantation of BMSCs expressing hPDGF-A/hBD2 promotes wound healing in rats with combined radiation-wound injury. Gene Ther 16:34–42

    Article  CAS  PubMed  Google Scholar 

  • Harvey B-G, Worgall S, Ely S et al (1999) Cellular immune responses of healthy individuals to intradermal administration of an E1–E3-adenovirus gene transfer vector. Hum Gene Ther 10:2823–2837

    Article  CAS  PubMed  Google Scholar 

  • Hirsch T, Spielmann M, Zuhaili B et al (2009) Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 11:220–228

    Article  CAS  PubMed  Google Scholar 

  • Icli B, Nabzdyk CS, Lujan-Hernandez J et al (2016) Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol 91:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen F, Mittler D, Hirsch T et al (2005) Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene Ther 12:1494–1502

    Article  CAS  PubMed  Google Scholar 

  • Jafari SMS, Shafighi M, Beltraminelli H et al (2017) Improvement of flap necrosis in a rat random skin flap model by in vivo electroporation-mediated HGF gene transfer. Plast Reconstr Surg 139:1116e–1127e

    Article  CAS  Google Scholar 

  • Jeschke M, Herndon D (2007) The combination of IGF-I and KGF cDNA improves dermal and epidermal regeneration by increased VEGF expression and neovascularization. Gene Ther 14:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Jeschke M, Richter G, Herndon D et al (2001) Therapeutic success and efficacy of nonviral liposomal cDNA gene transfer to the skin in vivo is dose dependent. Gene Ther 8:1777

    Article  CAS  PubMed  Google Scholar 

  • Jeschke M, Richter G, Höfstädter F et al (2002) Non-viral liposomal keratinocyte growth factor (KGF) cDNA gene transfer improves dermal and epidermal regeneration through stimulation of epithelial and mesenchymal factors. Gene Ther 9:1065

    Article  CAS  PubMed  Google Scholar 

  • Jeschke MG, Schubert T, Klein D (2004) Exogenous liposomal IGF-I cDNA gene transfer leads to endogenous cellular and physiological responses in an acute wound. Am J Physiol Regul Integr Comp Physiol 286(5):958–966

    Article  Google Scholar 

  • Katz MG, Fargnoli AS, Williams RD et al (2013) Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther 24:914–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Yoo HS (2010) MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. J Control Release 145:264–271

    Article  CAS  PubMed  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208

    CAS  PubMed  Google Scholar 

  • Kwon MJ, An S, Choi S et al (2012) Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med 14:272–278

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zheng L, Xu X et al (2013) Mesenchymal stem cells modified with angiopoietin-1 gene promote wound healing. Stem Cell Res Ther 4:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Luo H-C, Yang C et al (2014) Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats. Int J Nanomed 9:3377

    Article  CAS  Google Scholar 

  • Lin MP, Marti GP, Dieb R et al (2006) Delivery of plasmid DNA expression vector for keratinocyte growth factor-1 using electroporation to improve cutaneous wound healing in a septic rat model. Wound Repair Regen 14:618–624

    Article  PubMed  Google Scholar 

  • Liu W, Chua C, Wu X et al (2003) Inhibiting scar formation in rat cutaneous wounds by blocking TGF-beta signaling. Zhonghua Yi Xue Za Zhi 83:31–36

    CAS  PubMed  Google Scholar 

  • Liu PY, Tong W, Liu K et al (2004) Liposome-mediated transfer of vascular endothelial growth factor cDNA augments survival of random-pattern skin flaps in the rat. Wound Repair Regen 12:80–85

    Article  PubMed  Google Scholar 

  • Liu L, Marti GP, Wei X et al (2008) Age-dependent impairment of HIF-1α expression in diabetic mice: correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J Cell Physiol Suppl 217:319–327

    Article  CAS  Google Scholar 

  • Mali S (2013) Delivery systems for gene therapy. Indian J Hum Genet 19:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti GP, Mohebi P, Liu L et al (2008) KGF-1 for wound healing in animal models. In: Electroporation protocols. Humana Press, New York, pp 383–391

  • Massadeh S, Al-Aamery M, Bawazeer S et al (2016) Nano-materials for gene therapy: an efficient way in overcoming challenges of gene delivery. J Biosens Bioelectron 7:2

    Article  CAS  Google Scholar 

  • Mohammadi Z, Abolhassani M, Dorkoosh F et al (2011) Preparation and evaluation of chitosan–DNA–FAP-B nanoparticles as a novel non-viral vector for gene delivery to the lung epithelial cells. Int J Pharm 409:307–313

    Article  CAS  PubMed  Google Scholar 

  • Monahan PE, Samulski RJ (2000) AAV vectors: is clinical success on the horizon? Gene Ther 7:24

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Uenoyama M, Tomita N et al (2002) Gene transfer of human hepatocyte growth factor into rat skin wounds mediated by liposomes coated with the sendai virus (hemagglutinating virus of Japan). Am J Pathol 161:1761–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanney LB, Paulsen S, Davidson MK et al (2000) Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Repair Regen 8:117–127

    Article  CAS  PubMed  Google Scholar 

  • Oryan A, Alemzadeh E (2017) Effects of insulin on wound healing: a review of animal and human evidences. Life Sci 174:59–67

    Article  CAS  PubMed  Google Scholar 

  • Oryan A, Zaker S (1998) Effects of topical application of honey on cutaneous wound healing in rabbits. Zent Vet A 45:181–188

    Article  CAS  Google Scholar 

  • Oryan A, Alemzadeh E, Moshiri A (2016a) Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. J Tissue Viability 25:98–118

    Article  PubMed  Google Scholar 

  • Oryan A, Mohammadalipour A, Moshiri A et al (2016b) Topical application of aloe vera accelerated wound healing, modeling, and remodeling: an experimental study. Ann Plast Surg 77:37–46

    Article  CAS  PubMed  Google Scholar 

  • Oryan A, Alemzadeh E, Moshiri A (2017) Burn wound healing: present concepts, treatment strategies and future directions. J Wound Care 26:5–19

    Article  CAS  PubMed  Google Scholar 

  • Ouyang D, Zhang H, Parekh HS et al (2011) The effect of pH on PAMAM dendrimer–siRNA complexation—endosomal considerations as determined by molecular dynamics simulation. Biophys Chem 158:126–133

    Article  CAS  PubMed  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  Google Scholar 

  • Park H-J, Yang F, Cho S-W (2012) Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev 64:40–52

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim JI, Lee I et al (2014) Inhibition of Pseudomonas aeruginosa with a recombinant RNA-based viral vector expressing human β-defensin 4. BMC Microbiol 14:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L-H, Wei W, Qi X-T et al (2013) Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/β-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol Pharm 10:3090–3102

    Article  CAS  PubMed  Google Scholar 

  • Peng L-H, Wei W, Shan Y-H et al (2015) β-Cyclodextrin-linked polyethylenimine nanoparticles facilitate gene transfer and enhance the angiogenic capacity of mesenchymal stem cells for wound repair and regeneration. J Biomed Nanotechnol 11:680–690

    Article  CAS  PubMed  Google Scholar 

  • Pereira CT, Herndon DN, Rocker R et al (2007) Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression. J Surg Res 139:222–228

    Article  CAS  PubMed  Google Scholar 

  • Quinonez R, Sutton RE (2002) Lentiviral vectors for gene delivery into cells. DNA Cell Biol 21:937–951

    Article  CAS  PubMed  Google Scholar 

  • Rabbani PS, Zhou A, Borab ZM et al (2017) Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials 132:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy: an overview. J Clin Diagn Res 9:01

    Article  Google Scholar 

  • Randeria PS, Seeger MA, Wang X-Q et al (2015) siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci 112:5573–5578

    Article  CAS  PubMed  Google Scholar 

  • Ritter T, Lehmann M, Volk H-D (2002) Improvements in gene therapy. BioDrugs 16:3–10

    Article  CAS  PubMed  Google Scholar 

  • Sa Guo, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  CAS  Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoff A, Rivera AA, Mathis JM et al (2007) Effect of adenoviral mediated overexpression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds. Int J Mol Med 85:481–496

    Article  CAS  Google Scholar 

  • Vannucci L, Lai M, Chiuppesi F et al (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36:1–22

    CAS  PubMed  Google Scholar 

  • Vauthier C, Zandanel C, Ramon AL (2013) Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci 18:406–418

    Article  CAS  Google Scholar 

  • Vogel JC (2000) Nonviral skin gene therapy. Hum Gene Ther 11:2253–2259

    Article  CAS  PubMed  Google Scholar 

  • Vranckx JJ, Yao F, Petrie N et al (2005) In vivo gene delivery of Ad-VEGF121 to full-thickness wounds in aged pigs results in high levels of VEGF expression but not in accelerated healing. Wound Repair Regen 13:51–60

    Article  PubMed  Google Scholar 

  • Waddington SN, Crossley R, Sheard V et al (2010) Gene delivery of a mutant TGFβ3 reduces markers of scar tissue formation after cutaneous wounding. Mol Ther 18:2104–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li L (2008) Adenovirus-mediated RNA interference against collagen-specific molecular chaperone 47-kDa heat shock protein suppresses scar formation on mouse wounds. Cell Biol Int 32:484–493

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Feng Y, Sun H et al (2012) miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol 181:1911–1920

    Article  PubMed  Google Scholar 

  • Wang X, Qian Y, Jin R et al (2013) Effects of TRAP-1-like protein (TLP) gene on collagen synthesis induced by TGF-β/Smad signaling in human dermal fibroblasts. PLoS ONE 8:e55899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol News 83:835–870

    CAS  Google Scholar 

  • Yang L, Wang J, Gao J (2010) Study on cotransfection of genes of insulin-like growth factor I and herpes simplex virus thymidine kinase for optimization of wound healing. Zhonghua Shao Shang Za Zhi 26:202–206

    CAS  PubMed  Google Scholar 

  • Yang L, Zheng Z, Zhou Q et al (2017) miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2. J Mol Histol 48:147–155

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Oryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oryan, A., Alemzadeh, E. & Zarei, M. Basic concepts, current evidence, and future potential for gene therapy in managing cutaneous wounds. Biotechnol Lett 41, 889–898 (2019). https://doi.org/10.1007/s10529-019-02701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02701-6

Keywords

Navigation