Skip to main content
Log in

RNAe in a transgenic growth hormone mouse model shows potential for use in gene therapy

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

RNAe is a new method that enhances protein expression at the post-transcriptional level. RNAe utility was further explored to improve endogenous protein expression.

Results

Transgenic mice were created by targeting RNAe to growth hormone gene into the C57/BL mouse genome by transposon mediated integration; the mice showed a heavier body weight and longer body length compared with normal mice. RNAe can also be used for gene therapy through the delivery of in vitro transcribed RNA.

Conclusion

This study takes a further step towards applying RNAe in pharmaceutical approaches by transposon-based transgenic mice model construction and the use of in vitro transcribed RNA transfection assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alatzoglou KS, Dattani MT (2012) Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD). Indian J Pediatr 79:99–106

    Article  PubMed  Google Scholar 

  • American Diabetes Association (2005) Diagnosis and classification of diabetes. Diabetes Care 28(Suppl 1):S37–42

    Article  Google Scholar 

  • Bartke A (1965) The response of two types of dwarf mice to growth hormone, thyrotropin, and thyroxine. Gen Comp Endocrinol 5:418–426

    Article  CAS  PubMed  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    Article  CAS  PubMed  Google Scholar 

  • Cecchi CR, Higuti E, Oliveira NA, Lima ER, Jakobsen M, Dagnaes-Hansen F, Gissel H, Aagaard L, Jensen TG, Jorge AA (2014) A novel homologous model for gene therapy of dwarfism by non-viral transfer of the mouse growth hormone gene into immunocompetent dwarf mice. Curr Gene Ther 14:44–51

    Article  CAS  PubMed  Google Scholar 

  • Charlton HM, Clark RG, Robinson IC, Goff AE, Cox BS, Bugnon C, Bloch BA (1988) Growth hormone-deficient dwarfism in the rat: a new mutation. J Endocrinol 119:51–58

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  CAS  PubMed  Google Scholar 

  • Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012—an update. J Gene Med 15:65–77

    Article  CAS  PubMed  Google Scholar 

  • Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D (2015) Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 26:443–451

    Article  CAS  PubMed  Google Scholar 

  • Hart IR (1996) Tissue specific promoters in targeting systemically delivered gene therapy. Semin Oncol 23(1):154–158

    CAS  PubMed  Google Scholar 

  • Higuti E, Cecchi CR, Oliveira NA, Lima ER, Vieira DP, Aagaard L, Jensen TG, Jorge AA, Bartolini P, Peroni CN (2016) Partial correction of the dwarf phenotype by non-viral transfer of the growth hormone gene in mice: treatment age is critical. Growth Horm IGF Res 26:1–7

    Article  CAS  PubMed  Google Scholar 

  • Indrieri A, Grimaldi C, Zucchelli S, Tammaro R, Gustincich S, Franco B (2016) Synthetic long non-coding RNAs [SINEUPs] rescue defective gene expression in vivo. Sci Rep 6:27315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy A, Gertsenstein M, Vintersten K, Behrinnger R (2003) Manipulating the mouse embryo: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with a metallothionein-growth hormone fusion gene. Nature 300:611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrucco L, Chiesa A, Soluri MF, Fasolo F, Takahashi H, Carninci P, Zucchelli S, Santoro C, Gustincich S, Sblattero D et al (2015) Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins. Gene 569:287–293

    Article  CAS  PubMed  Google Scholar 

  • Steven MR, Stacey M, Eric JS (2005) Cystic fibrosis. New Engl J Med 352:1992–2001

    Article  Google Scholar 

  • von Waldthausen DC, Schneider MR, Renner-Müller I, Rauleder DN, Herbach N, Aigner B, Wanke B, Wolf E (2008) Systemic overexpression of growth hormone (GH) in transgenic FVB/N inbred mice: an optimized model for holistic studies of molecular mechanisms underlying GH-induced kidney pathology. Transgenic Res 17:479–488

    Article  Google Scholar 

  • Yao Y, Jin S, Long H, Yu Y, Zhang Z, Cheng G, Xu C, Ding Y, Guan Q, Li N (2015) RNAe: an effective method for targeted protein translation enhancement by artificial non-coding RNA with SINEB2 repeat. Nucleic Acid Res 43:e58

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Takahashi H, Jones MH, Santoro C, Sblattero D, Cotella D et al (2015a) SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front Cell Neurosci 9:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucchelli S, Cotella D, Takahashi H, Carrieri C, Cimatti L, Fasolo F, Jones MH, Sblattero D, Sanges R, Santoro C et al (2015b) SINEUPs: a new class of natural and synthetic antisense long non-coding RNAs that activate translation. RNA Biol 12:771–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Sciences Foundation of China (Grant Nos. 31170940, 31470933), 973 Basic Research Fund (Grant No. 2012CB725204), National High Technology Research and Development (863 Program) (Grant Nos. 2012AA020503, 2013AA020301 and 2012AA02A702), Tsinghua University Initiative Scientific Research Program (No. 20131089199).

Supporting information

Supplementary Fig. 1—Map of the pPiggy-RNAe-mGH-polyA plasmid.

Supplementary Fig. 2—Growth curve for the RNAe-mGH transgenic mice over 30 weeks (the deceased mice were included).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wu.

Additional information

Haizhou Long and Yi Yao are contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, H., Yao, Y., Jin, S. et al. RNAe in a transgenic growth hormone mouse model shows potential for use in gene therapy. Biotechnol Lett 39, 179–188 (2017). https://doi.org/10.1007/s10529-016-2236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2236-7

Keywords

Navigation