Skip to main content
Log in

EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Homocysteine (Hcy) induced vascular endothelial injury leads to the progression of endothelial dysfunction in atherosclerosis. Epigallocatechin gallate (EGCG), a natural dietary antioxidant, has been applied to protect against atherosclerosis. However, the underlying protective mechanism of EGCG has not been clarified. The present study investigated the mechanism of EGCG protected against Hcy-induced human umbilical vein endothelial cells (HUVECs) apoptosis. Methyl thiazolyl tetrazolium assay (MTT), transmission electron microscope, fluorescent staining, flow cytometry, western blot were used in this study. The study has demonstrated that EGCG suppressed Hcy-induced endothelial cell morphological changes and reactive oxygen species (ROS) generation. Moreover, EGCG dose-dependently prevented Hcy-induced HUVECs cytotoxicity and apoptotic biochemical changes such as reducing mitochondrial membrane potential (MMP), decreasing Bcl-2/Bax protein ratio and activating caspase-9 and 3. In addition, EGCG enhanced the protein ratio of p-Akt/Akt, endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) formation in injured cells. In conclusion, the present study shows that EGCG prevents Hcy-induced HUVECs apoptosis via modulating mitochondrial apoptotic and PI3K/Akt/eNOS signaling pathways. Furthermore, the results indicate that EGCG is likely to represent a potential therapeutic strategy for atherosclerosis associated with Hyperhomocysteinemia (HHcy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Hcy:

Homocysteine

EGCG:

Epigallocatechin gallate

HHcy:

Hyperhomocysteinemia

HUVEC:

Human umbilical vein endothelial cell

LDH:

Lactate dehydrogenase

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

MMP:

Mitochondrial membrane potential

Akt:

Protein kinase B

p-Akt:

Phosphorylated protein kinase B

eNOS:

Endothelial nitric oxide synthase

NO:

Nitric oxide

References

  1. Bautista LE, Arenas IA, Penuela A, Martinez LX (2002) Total plasma homocysteine level and risk of cardiovascular disease: a meta-analysis of prospective cohort studies. J Clin Epidemiol 55:882–887

    Article  PubMed  Google Scholar 

  2. Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62

    Article  CAS  PubMed  Google Scholar 

  3. Clarke R, Daly L, Robinson K et al (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324:1149–1155

    Article  CAS  PubMed  Google Scholar 

  4. Dong F, Zhang X, Li SY et al (2005) Possible involvement of NADPH oxidase and JNK in homocysteine-induced oxidative stress and apoptosis in human umbilical vein endothelial cells. Cardiovasc Toxicol 5:9–20

    Article  CAS  PubMed  Google Scholar 

  5. Moselhy SS, Demerdash SH (2003) Plasma homocysteine and oxidative stress in cardiovascular disease. Dis Markers 19:27–31

    Article  CAS  PubMed  Google Scholar 

  6. Postea O, Krotz F, Henger A, Keller C, Weiss N (2006) Stereospecific and redox-sensitive increase in monocyte adhesion to endothelial cells by homocysteine. Arterioscler Thromb Vasc Biol 26:508–513

    Article  CAS  PubMed  Google Scholar 

  7. Upchurch GR Jr, Welch GN, Fabian AJ et al (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  CAS  PubMed  Google Scholar 

  8. Lonn E, Yusuf S, Arnold MJ et al (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354:1567–1577

    Article  CAS  PubMed  Google Scholar 

  9. Toole JF, Malinow MR, Chambless LE et al (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. Jama 291:565–575

    Article  CAS  PubMed  Google Scholar 

  10. Woodman RJ, Celermajer DE, Thompson PL, Hung J. (2004) Folic acid does not improve endothelial function in healthy hyperhomocysteinaemic subjects. Clin Sci 106:353–358

    Article  CAS  PubMed  Google Scholar 

  11. Choi YJ, Jeong YJ, Lee YJ, Kwon HM, Kang YH (2005) (-)Epigallocatechin gallate and quercetin enhance survival signaling in response to oxidant-induced human endothelial apoptosis. J Nutr 135:707–713

    CAS  PubMed  Google Scholar 

  12. Guo Q, Zhao B, Li M, Shen S, Xin W (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1304:210–222

    Article  CAS  PubMed  Google Scholar 

  13. Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W (1999) ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427:13–23

    Article  CAS  PubMed  Google Scholar 

  14. Ou HC, Song TY, Yeh YC, et al. (2010) EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J Appl Physiol 108:1745–1756

    Article  CAS  PubMed  Google Scholar 

  15. Riemersma RA, Rice-Evans CA, Tyrrell RM, Clifford MN, Lean ME (2001) Tea flavonoids and cardiovascular health. Mon J Assoc Phys 94:277–282

    CAS  Google Scholar 

  16. Ludwig A, Lorenz M, Grimbo N et al (2004) The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells. Biochem Biophys Res Commun 316:659–665

    Article  CAS  PubMed  Google Scholar 

  17. Tedeschi E, Suzuki H, Menegazzi M (2002) Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition. Ann N Y Acad Sci 973:435–437

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Lui WT, Chu CY, Ng PS, Wang CC, Rogers MS (2009) Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Human Reprod 24:608–618

    Article  CAS  Google Scholar 

  19. Wen YD, Wang H, Kho SH et al (2013) Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PloS One 8:e53147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho FM, Lin WW, Chen BC et al (2006) High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal 18:391–399

    Article  CAS  PubMed  Google Scholar 

  22. Choy JC, Granville DJ, Hunt DW, McManus BM (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33:1673–1690

    Article  CAS  PubMed  Google Scholar 

  23. Mujumdar VS, Aru GM, Tyagi SC (2001) Induction of oxidative stress by homocyst(e)ine impairs endothelial function. J Cell Biochem 82:491–500

    Article  CAS  PubMed  Google Scholar 

  24. Lin R, Liu J, Gan W, Ding C (2007) Protective effect of quercetin on the homocysteine-injured human umbilical vein vascular endothelial cell line (ECV304). Basic Clin Pharmacol Toxicol 101:197–202

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa K, Takenaga K, Akimoto M et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664

    Article  CAS  PubMed  Google Scholar 

  26. Ly JD, Grubb DR, Lawen A. (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

    Article  CAS  PubMed  Google Scholar 

  27. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett 396:7–13

    Article  CAS  PubMed  Google Scholar 

  28. Sipkens JA, Hahn N, van den Brand CS et al (2013) Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 67:341–352

    Article  CAS  PubMed  Google Scholar 

  29. Tyagi N, Ovechkin AV, Lominadze D, Moshal KS, Tyagi SC (2006) Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. J Cell Biochem 98:1150–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22:267–272

    Article  CAS  PubMed  Google Scholar 

  31. Dimmeler S, Zeiher AM (1999) Nitric oxide–an endothelial cell survival factor. Cell Death Differ 6:964–968

    Article  CAS  PubMed  Google Scholar 

  32. Weiss N (2005) Mechanisms of increased vascular oxidant stress in hyperhomocys-teinemia and its impact on endothelial function. Curr Drug Metab 6:27–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (No. 30772601) and the University Innovation Team Project Foundation of Education Department of Liaoning Province (No. LT2013019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyao Tang.

Additional information

Shumin Liu, Zhengwu Sun and Peng Chu equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Sun, Z., Chu, P. et al. EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways. Apoptosis 22, 672–680 (2017). https://doi.org/10.1007/s10495-017-1360-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1360-8

Keywords

Navigation