Skip to main content

Advertisement

Log in

Thermal-drag and Transition from Quasi-steady to Highly-unsteady Combustion of a Fuel Droplet in the Presence of Upstream Velocity Oscillations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Numerical studies on the behaviors of combustion of 1-butanol fuel droplet at presence of upstream velocity oscillation are performed. Fuel droplet has an initial diameter of 1.25 mm and ambiance pressure and temperature are 0.4 MPa and 300 K, respectively. These conditions are those in which the microgravity experiments in literature conducted. In the excellent agreement with the experimental data, numerical results show a significant enhancement of the burning rate of droplet compared to what is predicted by quasi-steady film theory models. The mechanism of the enhancement of burning rate is clarified then by observation of a new mechanism that is named thermal-drag, TD. It is shown, depending on the amplitude and frequency of the upstream velocity oscillation, the flame in wake region of droplet can move toward the droplet surface by the force of vortex flow motions produced by the TD mechanism. It is verified that such movement of the flame is responsible for the enhancement of the burning rate and deviation of the response of the evaporation process form the predictions of the quasi-steady model. Frequency analysis of the burning rate reveals that at low frequency and amplitude the FFT diagram of the burning rate contains of only one main peak synchronies with the frequency of upstream velocity oscillation, which implies a quasi-steady response. However; at high frequency and amplitude the diagram includes of wide range of frequencies beside of the main peak that readily shows deviation from the quasi-steady conditions. In the latter, the study on the response of the combustion to the upstream velocity fluctuations in which the fluctuations contains of three wave numbers shows the amplification of the effects of low frequency fluctuations rather than that of damping of the effects of high frequency fluctuations on the evaporation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gökalp, I., Chauveau, C., Simon, O., Chesneau, X.: Mass transfer from liquid fuel droplets in turbulent flow. Combust. Flame 89, 286–298 (1992)

    Article  ADS  Google Scholar 

  2. Hiromitsu, N., Kawaguchi, O.: Influence of flow turbulence on the evaporation rate of a suspended droplet in a hot air flow. Heat Transfer-Jpn. Res. 24(8), 689–700 (1995)

    Google Scholar 

  3. Birouk, M., Gökalp, I.: A new correlation for turbulent mass transfer from liquid droplets. Int. J. Heat Mass Transfer 45, 37–45 (2002)

    Article  Google Scholar 

  4. Wu, J.-S., Lin, Y.-J., Sheen, H.-J.: Effects of ambient turbulence and fuel properties on the evaporation rate of single droplets. Int. J. Heat Mass Transfer 44, 4593–4603 (2001)

    Article  Google Scholar 

  5. Wu, J.-S., Hsu, K.-H., Kuo, P.-M., Sheen, H.-J.: Evaporation model of a single hydrocarbon fuel droplet due to ambient turbulence at intermediate Reynolds numbers. Int. J. Heat Mass Transfer 46, 4741–4745 (2003)

    Article  Google Scholar 

  6. Abou Al-Sood, M.M., Birouk, M.: A numerical study of the effect of turbulence on mass transfer from a single fuel droplet evaporating in a hot convective flow. Int. J. Thermal Sci. 46, 779–789 (2007)

    Article  Google Scholar 

  7. Abou Al-Sood, M.M., Birouk, M.: Droplet heat and mass transfer in a turbulent hot airstream. Int. J. Heat Mass Transfer 51, 1313–1324 (2008)

    Article  MATH  Google Scholar 

  8. Birouk, M., Gökalp, I.: Current status of droplet evaporation in turbulent flows. Prog. Energy Combust. Sci. 32, 408–423 (2006)

    Article  Google Scholar 

  9. Frössling, N.: Gerlands Beiter. Geophysics 52, 170–175 (1938)

    Google Scholar 

  10. Masoudi, M., Sirignano, W.A.: Collision of a vortex with a vaporizing droplet. Int. J. Multiphase Flow 26, 1925–1949 (2000)

    Article  MATH  Google Scholar 

  11. Vincent, A., Meneguzzi, M.: The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1–20 (1991)

    Article  MATH  ADS  Google Scholar 

  12. Gotoh, T., Fukayama, D., Nakano, T.: Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 1065–1081 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Burger, M., Schmehl1, R., Koch, R., Wittig, S., Bauer, H.-J.: DNS of droplet-vortex interaction with a Karman vortex street. Int. J. Heat Fluid Flow 27, 181–191 (2006)

    Article  Google Scholar 

  14. Mitsuya, M., Hanai, H., Sakurai, S., Ogami, Y., Kobayashi, H.: Droplet combustion experiments in varying forced convection using microgravity environment. Int. J. Heat Fluid Flow 26, 914–921 (2005)

    Article  Google Scholar 

  15. Sakurai, S.: Master thesis, Tohoku University, Sendai (in Japanese) (2006)

  16. Jangi, M., Sakurai, S., Ogami, Y., Kobayashi, H.: On the validity of quasi-steady assumption on transient droplet combustion. Combust. Flame 156, 99–105 (2009)

    Article  Google Scholar 

  17. Ogami, Y., Sakurai, S., Hasegawa, S., Jangi, M., Nakamura, H., Yoshinaga, K., Kobayashi, H.: Microgravity experiments of single droplet combustion in oscillatory flow at elevated pressure. Proc. Combust. Inst. 32, 2005–2012 (2009)

    Article  Google Scholar 

  18. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32, 1505–1518 (1989)

    Article  Google Scholar 

  19. Bird, R.B., Stewart, W.E., Lightfood, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  20. Faeth, G.M.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9, 1–75 (1983)

    Article  ADS  Google Scholar 

  21. Clift, R., Grace, J.R., Weber, M.E.: Bubbles Drops and Particles. Academic, New York (1978)

    Google Scholar 

  22. Bagchi, P., Ha, M.Y., Balachandar, S.: Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow. J. Fluids Eng. Trans. ASME 123, 347–358 (2001)

    Article  Google Scholar 

  23. Lisochkin, Ya.A., Poznyak, V.I.: Determination of global parameters of gas-phase oxidation reactions from heat-evolution rates in a plug flow reactor. Combust. Explos. Schock Waves 34, 133–138 (1998)

    Article  Google Scholar 

  24. Pope, D.N., Gogos, G.: Numerical simulation of fuel droplet extinction due to forced convection. Combust. Flame 142, 89–106 (2005)

    Article  Google Scholar 

  25. Westbrook, C.K., Dryer, F.L.: Simplified reaction mechanisms of the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27, 31–43 (1981)

    Article  Google Scholar 

  26. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  27. Abramovich, G.N., Schindel, L.: The Theory of Turbulent Jets. MIT, Cambridge (1963)

    Google Scholar 

  28. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, 1st edn. Hemisphere, Washington, DC (1980)

    MATH  Google Scholar 

  29. Farrashkhalvat, M., Miles, J.P.: Basic Structured Grid Generation. Butterworth-Heinemann, Oxford (2003)

    Google Scholar 

  30. Vinokur, M.: On one-dimensional stretching functions for finite-difference calculations. J. Comput. Phys. 50, 215–234 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Johnson, T.A., Patel, V.C.: Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999)

    Article  ADS  Google Scholar 

  32. Spalding, D.B.: The combustion of liquid fuels. Proc. Comb. Inst. 4, 847–864 (1953)

    Google Scholar 

  33. Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowlinga, A.P., Mastorakos, E.: Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143, 37–55 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jangi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jangi, M., Shaw, B. & Kobayashi, H. Thermal-drag and Transition from Quasi-steady to Highly-unsteady Combustion of a Fuel Droplet in the Presence of Upstream Velocity Oscillations. Flow Turbulence Combust 84, 97–123 (2010). https://doi.org/10.1007/s10494-009-9230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-009-9230-2

Keywords

Navigation