Skip to main content
Log in

Handheld Electrical Impedance Myography Probe for Assessing Carpal Tunnel Syndrome

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrical impedance myography (EIM) is a novel, noninvasive, and painless technique for quantitatively assessing muscle health as well as disease status and progression. The preparatory work for commercial adhesive electrodes used in previous EIM measurements is tedious, as the electrodes need to be cut, repeatedly applied, and removed. Moreover, the electrode distances need to be measured many times. To overcome these problems, we developed a convenient and practical handheld EIM probe for assessing carpal tunnel syndrome (CTS) in the small hand muscles. To reduce the electrode–skin contact impedance (ESCI), the micropillared and microholed stainless steel electrodes (SSEs) contained in the probe were fabricated using a laser processing technique. When covered with saline, these electrodes showed lower ESCIs than a smooth SSE and Ag/AgCl electrode. The probe was shown to have excellent test–retest reproducibility in both healthy subjects and CTS patients, with intraclass correlation coefficients exceeding 0.975. The reactance and phase values of the abductor pollicis brevis (affected muscle) for CTS patients were consistently lower than those for healthy subjects, with a 50-kHz difference of 37.1% (p < 0.001) and 31.0% (p < 0.001), respectively. Further, no significant differences were detected in the case of the abductor digiti minimi (unaffected muscle). These results indicate that EIM has considerable potential for CTS assessment and hence merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ADM:

Abductor digiti minimi

ALS:

Amyotrophic lateral sclerosis

APB:

Abductor pollicis brevis

CMAP:

Compound motor action potential

CTS:

Carpal tunnel syndrome

DML:

Distal motor latency

EIM:

Electrical impedance myography

ESCI:

Electrode-skin contact impedance

ICC:

Intraclass correlation coefficient

SNAP:

Sensory nerve action potential

SNCV:

Sensory nerve conduction velocity

SSE:

Stainless steel electrode

References

  1. Ching, C. T., et al. Characterization of the muscle electrical properties in low back pain patients by electrical impedance myography. PLoS ONE 8(4):e61639, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garmirian, L. P., et al. Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy. Muscle Nerve 39:16–24, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Geisbush, T. R., et al. Inter-session reliability of electrical impedance myography in children in a clinical trial setting. Clin. Neurophysiol. 126(9):1790–1796, 2015.

    Article  PubMed  Google Scholar 

  4. Ibrahim, I., et al. Carpal tunnel syndrome: a review of the recent literature. Open Orthop. J. 6:69–76, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalvøy, H., et al. Electrical impedance of stainless steel needle electrodes. Ann. Biomed. Eng. 38(7):2371–2382, 2010.

    Article  PubMed  Google Scholar 

  6. Kautek, W., et al. Femtosecond-pulse laser ablation of metallic, semiconducting, ceramic, and biological materials. SPIE Proc. 2207:600–611, 1994.

    Article  Google Scholar 

  7. Khalil, S. F., et al. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 14(6):10895–10928, 2014.

    Article  Google Scholar 

  8. Li, J., et al. A comparison of three electrophysiological methods for the assessment of disease status in a mild spinal muscular atrophy mouse model. PLoS ONE 9(10):e111428, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li, Z., et al. Microneedle electrode array for electrical impedance myography to characterize neurogenic myopathy. Ann. Biomed. Eng. 44(5):1566–1575, 2016.

    Article  PubMed  Google Scholar 

  10. Luft, A., et al. A study of thermal and mechanical effects on materials induced by pulsed laser drilling. Appl. Phys. A 63:93–101, 1996.

    Article  Google Scholar 

  11. McAdams, E. T., et al. Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography. Med. Biol. Eng. Comput. 34:397–408, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. McIlduff, C., et al. An improved electrical impedance myography (EIM) tongue array for use in clinical trials. Clin. Neurophysiol. 127(1):932–935, 2016.

    Article  PubMed  Google Scholar 

  13. McIlduff, C. E., et al. Optimizing electrical impedance myography of the tongue in ALS. Muscle Nerve 2016. doi:10.1002/mus.25375.

    PubMed  Google Scholar 

  14. Middleton, S. D., et al. Carpal tunnel syndrome. BMJ 349:g6437, 2014.

    Article  PubMed  Google Scholar 

  15. Narayanaswami, P., et al. Utilizing a handheld electrode array for localized muscle impedance measurements. Muscle Nerve 46(2):257–263, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Perry, M. D., et al. Ultrashort-pulse laser machining of dielectric materials. J. Appl. Phys. 85(9):6803–6810, 1999.

    Article  CAS  Google Scholar 

  17. Rafael, R., et al. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2:219–225, 2008.

    Article  Google Scholar 

  18. Riccò, M., et al. Personal risk factors for carpal tunnel syndrome in female visual display unit workers. Int. J. Occup. Med. Environ. Health 29(6):927–936, 2016.

    Article  PubMed  Google Scholar 

  19. Rizvi, N. H., et al. Femtosecond laser micromachining: current status and applications. RIKEN Rev. 50:107–112, 2003.

    Google Scholar 

  20. Rutkove, S. B. Electrical impedance myography: background, current state, and future directions. Muscle Nerve 40(6):936–946, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rutkove, S. B., et al. Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve 25:390–397, 2002.

    Article  PubMed  Google Scholar 

  22. Rutkove, S. B., et al. Characterizing spinal muscular atrophy with electrical impedance myography. Muscle Nerve 42(6):915–921, 2010.

    Article  PubMed  Google Scholar 

  23. Rutkove, S. B., et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph. Lateral Scler. 13(5):439–445, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rutkove, S. B., et al. Electrical impedance myography in spinal muscular atrophy: a longitudinal study. Muscle Nerve 45(5):642–647, 2012.

    Article  PubMed  Google Scholar 

  25. Rutkove, S. B., et al. Electrical impedance myography correlates with standard measures of ALS severity. Muscle Nerve 49(3):441–443, 2014.

    Article  PubMed  Google Scholar 

  26. Rutkove, S. B., et al. Cross-sectional evaluation of electrical impedance myography and quantitative ultrasound for the assessment of Duchenne muscular dystrophy in a clinical trial setting. Pediatr. Neurol. 51(1):88–92, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sanchez, B., et al. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice. PLoS ONE 10(10):e0140521, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schwartz, S., et al. Optimizing electrical impedance myography measurements by using a multifrequency ratio: a study in Duchenne muscular dystrophy. Clin. Neurophysiol. 126(1):202–208, 2015.

    Article  PubMed  Google Scholar 

  29. Shellikeri, S., et al. Electrical impedance myography in the evaluation of the tongue musculature in amyotrophic lateral sclerosis. Muscle Nerve 52(4):584–591, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Spieker, A. J., et al. Electrical impedance myography in the diagnosis of radiculopathy. Muscle Nerve 48(5):800–805, 2013.

    Article  PubMed  Google Scholar 

  31. Statland, J. M., et al. Electrical impedance myography in facioscapulohumeral muscular dystrophy. Muscle Nerve 54(4):696–701, 2016.

    Article  PubMed  Google Scholar 

  32. Sugioka, K., et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14(18):3447–3458, 2014.

    Article  CAS  PubMed  Google Scholar 

  33. Sung, M., et al. The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance. Clin. Neurophysiol. 124(2):400–404, 2013.

    Article  PubMed  Google Scholar 

  34. van Suchtelen, M., et al. Progression of carpal tunnel syndrome according to electrodiagnostic testing in nonoperatively treated patients. Arch. Bone Joint. Surg. 2:185–191, 2014.

    PubMed  PubMed Central  Google Scholar 

  35. Wang, L. L., et al. Electrical impedance myography for monitoring motor neuron loss in the SOD1 G93A amyotrophic lateral sclerosis rat. Clin. Neurophysiol. 122(12):2505–2511, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu, J. S., et al. Assessment of aged mdx mice by electrical impedance myography and magnetic resonance imaging. Muscle Nerve 52(4):598–604, 2015.

    Article  PubMed  Google Scholar 

  37. Yin, Y., et al. Comparison of three kinds of electrode-skin interfaces for electrical impedance scanning. Ann. Biomed. Eng. 38(6):2032–2039, 2010.

    Article  PubMed  Google Scholar 

  38. Zaidman, C. M., et al. Electrical impedance myography in Duchenne muscular dystrophy and healthy controls: a multicenter study of reliability and validity. Muscle Nerve 52(4):592–597, 2015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 61376072, 61334008). The authors acknowledge the support of the Department of Hand Surgery, HuaShan Hospital of Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Tian or Yude Yu.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Zhao Li and Lingfen Chen have contributed equally to this study and share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, L., Zhu, Y. et al. Handheld Electrical Impedance Myography Probe for Assessing Carpal Tunnel Syndrome. Ann Biomed Eng 45, 1572–1580 (2017). https://doi.org/10.1007/s10439-017-1819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1819-3

Keywords

Navigation