Skip to main content
Log in

Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices, due to their abilities to reproduce precisely nonlinear mechanical properties of human tissues/organs. In practical applications, the soft network materials usually serve as the encapsulation layer and/or substrate of bio-integrated electronic devices, where deterministic holes can be utilized to accommodate hard chips, thereby increasing the filling ratio of the device system. Therefore, it is essential to understand how the hole-type imperfection affects the stretchability of soft network materials with various geometric constructions. This work presents a systematic investigation of the imperfection sensitivity of mechanical properties in soft network materials consisting of horseshoe microstructures, through combined computational and experimental studies. A factor of imperfection insensitivity of stretchability is introduced to quantify the influence of hole imperfections, as compared to the case of perfect soft network materials. Such factor is shown to have different dependences on the arc angle and normalized width of horseshoe microstructures for triangular network materials. The soft triangular and Kagome network materials, especially with the arc angle in the range of (30\(^{\circ }\), 60\(^{\circ }\)), are found to be much more imperfection insensitive than corresponding traditional lattice materials with straight microstructures. Differently, the soft honeycomb network materials are not as imperfection insensitive as traditional honeycomb lattice materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, Y., Naleway, S.E., Wang, B.: Biological and bioinspired materials: structure leading to functional and mechanical performance. Bioactive Mater. 5, 745–757 (2020)

    Article  Google Scholar 

  2. Liu, Z.Q., Zhang, Z.F., Ritchie, R.O.: Structural orientation and anisotropy in biological materials: functional designs and mechanics. Adv. Funct. Mater. 30, 1908121 (2020)

    Article  Google Scholar 

  3. Wegst, U.G., Bai, H., Saiz, E., et al.: Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015)

    Article  Google Scholar 

  4. Meyers, M.A., McKittrick, J., Chen, P.-Y.: Structural biological materials: critical mechanics-materials connections. Science. 339, 773–779 (2013)

    Article  Google Scholar 

  5. Aydin, O., Zhang, X.T., Nuethong, S., et al.: Neuromuscular actuation of biohybrid motile bots. Proc. Natl. Acad. Sci. USA 116, 19841–19847 (2019)

    Article  Google Scholar 

  6. Fernandes, M.C., Aizenberg, J., Weaver, J.C., et al.: Mechanically robust lattices inspired by deep-sea glass sponges. Nat. Mater. 20, 237–241 (2020)

    Article  Google Scholar 

  7. Gao, Y., Guo, Z.B., Song, Z.Q., et al.: Spiral interface: a reinforcing mechanism for laminated composite materials learned from nature. J. Mech. Phys. Solids. 109, 252–263 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gao, C., Hasseldine, B.P.J., Li, L., et al.: Amplifying strength, toughness, and auxeticity via wavy sutural tessellation in plant seedcoats. Adv. Mater. 30, 1800579 (2018)

    Article  Google Scholar 

  9. Lee, K.H., Yu, K., Al Ba ba a, H., et al.: Sharkskin-inspired magnetoactive reconfigurable acoustic metamaterials. Research. 2020, 4825185 (2020)

  10. Yang, C.H., Suo, Z.G.: Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018)

    Article  Google Scholar 

  11. Yuk, H., Zhang, T., Parada, G.A., et al.: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016)

    Article  Google Scholar 

  12. Xu, J., Wang, S.H., Wang, G.J.N., et al.: Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science. 355, 59–64 (2017)

    Article  Google Scholar 

  13. Kim, K., Kim, B., Lee, C.H.: Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems. Adv. Mater. 32, 1902051 (2020)

    Article  Google Scholar 

  14. Yang, Z.H., Zhai, Z.R., Song, Z.M., et al.: Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Adv. Mater. 32, 1907495 (2020)

    Article  Google Scholar 

  15. Yao, S.S., Zhu, Y.: Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv. Mater. 27, 1480–1511 (2015)

    Article  Google Scholar 

  16. Kumar, K.S., Chen, P.Y., Ren, H.L.: A review of printable flexible and stretchable tactile sensors. Research. 2019, 3018568 (2019)

    Google Scholar 

  17. Nie, S., Cai, M., Wang, C.J., et al.: Fatigue life prediction of serpentine interconnects on soft elastomers for stretchable electronics. J. Appl. Mech.-Trans. ASME. 87, 011011 (2020)

    Article  Google Scholar 

  18. Shi, L., Jia, K., Gao, Y.Y., et al.: Highly stretchable and transparent ionic conductor with novel hydrophobicity and extreme-temperature tolerance. Research. 2020, 2505619 (2020)

    Article  Google Scholar 

  19. Xiang, Y.H., Zhong, D.M., Wang, P., et al.: A general constitutive model of soft elastomers. J. Mech. Phys. Solids. 117, 110–122 (2018)

    Article  MathSciNet  Google Scholar 

  20. Yu, B., Kang, S.Y., Akthakul, A., et al.: An elastic second skin. Nat. Mater. 15, 911–918 (2016)

    Article  Google Scholar 

  21. Chen, Q.Z., Harding, S.E., Ali, N.N., et al.: Biomaterials in cardiac tissue engineering: ten years of research survey. Mater. Sci. Eng. R-Rep. 59, 1–37 (2008)

    Article  Google Scholar 

  22. Engelmayr, G.C., Cheng, M.Y., Bettinger, C.J., et al.: Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003–1010 (2008)

    Article  Google Scholar 

  23. Lee, A., Hudson, A.R., Shiwarski, D.J., et al.: 3D bioprinting of collagen to rebuild components of the human heart. Science. 365, 482–487 (2019)

    Article  Google Scholar 

  24. Roach, D.J., Yuan, C., Kuang, X., et al.: Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces. 11, 19514–19521 (2019)

    Article  Google Scholar 

  25. Zhang, Y.H., Zhang, F., Yan, Z., et al.: Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017)

    Article  Google Scholar 

  26. Lu, T.Q., Chen, Z.Q., Qi, H.J., et al.: A micro-structure based constitutive model for anisotropic stress-strain behaviors of artery tissues. Int. J. Solids Struct. 139, 55–64 (2018)

    Article  Google Scholar 

  27. Wu, L., Mao, G.Y., Nian, G.D., et al.: Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression. Soft Matter. 14, 4355–4363 (2018)

    Article  Google Scholar 

  28. Lin, C., Lv, J.X., Li, Y.S., et al.: 4D-printed biodegradable and remotely controllable shape memory occlusion devices. Adv. Funct. Mater. 29, 1906569 (2019)

    Article  Google Scholar 

  29. Jang, K.-I., Chung, H.U., Xu, S., et al.: Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6, 7566 (2015)

    Article  Google Scholar 

  30. Ma, Q., Cheng, H., Jang, K.-I., et al.: A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. J. Mech. Phys. Solids. 90, 179–202 (2016)

    Article  MathSciNet  Google Scholar 

  31. Liu, J., Zhang, Y.: A mechanics model of soft network materials with periodic lattices of arbitrarily shaped filamentary microstructures for tunable Poisson’s ratios. J. Appl. Mech.-Trans. ASME. 85, 051003 (2018)

    Article  Google Scholar 

  32. Yan, D.J., Chang, J.H., Zhang, H., et al.: Soft three-dimensional network materials with rational bio-mimetic designs. Nat. Commun. 11, 1180 (2020)

    Article  Google Scholar 

  33. Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids. 49, 1747–1769 (2001)

    Article  MATH  Google Scholar 

  34. Tankasala, H.C., Deshpande, V.S., Fleck, N.A.: Tensile response of elastoplastic lattices at finite strain. J. Mech. Phys. Solids. 109, 307–330 (2017)

    Article  MathSciNet  Google Scholar 

  35. Vighotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. J. Mech. Phys. Solids. 64, 44–60 (2014)

    Article  MathSciNet  Google Scholar 

  36. Yang, W., Liu, Q., Gao, Z., et al.: Theoretical search for heterogeneously architected 2D structures. Proc. Natl. Acad. Sci. USA 115, 7245–7254 (2018)

    Article  Google Scholar 

  37. Jia, Z., Liu, F., Jiang, X.H., et al.: Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. J. Appl. Phys. 127, 150901 (2020)

    Article  Google Scholar 

  38. Chen, H., Zhu, F., Jang, K.I., et al.: The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics. J. Mech. Phys. Solids. 120, 199–207 (2018)

    Article  MathSciNet  Google Scholar 

  39. Liu, J., Zhang, Y.: Soft network materials with isotropic negative Poisson’s ratios over large strains. Soft Matter. 14, 693–703 (2018)

    Article  Google Scholar 

  40. Ma, Q., Zhang, Y.: Mechanics of fractal-inspired horseshoe microstructures for applications in stretchable electronics. J. Appl. Mech. 83, 111008 (2016)

    Article  Google Scholar 

  41. Liu, J., Yan, D., Zhang, Y.: Mechanics of unusual soft network materials with rotatable structural nodes. J. Mech. Phys. Solids. 146, 104210 (2021)

  42. Ni, X.Y., Guo, X.G., Li, J.H., et al.: 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion. Adv. Mater. 31, 1905405 (2019)

    Article  Google Scholar 

  43. Zhang, H., Guo, X., Wu, J., et al.: Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Sci. Adv. 4, eaar8535 (2018)

  44. Lu, B.Y., Yuk, H., Lin, S.T., et al.: Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019)

    Article  Google Scholar 

  45. Lei, M., Hong, W., Zhao, Z., et al.: 3D printing of auxetic metamaterials with digitally reprogrammable shape. ACS Appl. Mater. Interfaces. 11, 22768–22776 (2019)

    Article  Google Scholar 

  46. Xin, X., Liu, L., Liu, Y., et al.: 4D Printing Auxetic Metamaterials with Tunable, Programmable, and Reconfigurable Mechanical Properties. Adv. Funct. Mater. 30, 2004226 (2020)

    Article  Google Scholar 

  47. Sadri, B., Goswami, D., de Medeiros, M.S., et al.: Wearable and implantable epidermal paper-based electronics. ACS Appl. Mater. Interfaces. 10, 31061–31068 (2018)

    Article  Google Scholar 

  48. Ling, S.J., Zhang, Q., Kaplan, D.L., et al.: Printing of stretchable silk membranes for strain measurements. Lab Chip. 16, 2459–2466 (2016)

    Article  Google Scholar 

  49. Ashley, B.K., Brown, M.S., Park, Y., et al.: Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring. Biosens. Bioelectron. 132, 343–351 (2019)

    Article  Google Scholar 

  50. Park, J., Choi, S., Janardhan, A.H., et al.: Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8, 344ra86 (2016)

  51. Cai, M., Nie, S., Du, Y.P., et al.: Soft elastomers with programmable stiffness as strain-isolating substrates for stretchable electronics. ACS Appl. Mater. Interfaces. 11, 14340–14346 (2019)

    Article  Google Scholar 

  52. Zhu, J., Fox, J.J., Yi, N., et al.: Structural design for stretchable microstrip antennas. ACS Appl. Mater. Interfaces. 11, 8867–8877 (2019)

    Article  Google Scholar 

  53. Huang, Z., Hao, Y., Li, Y., et al.: Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018)

    Article  Google Scholar 

  54. Han, M., Chen, L., Aras, K., et al.: Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat. Biomed. Eng. 4, 997–1009 (2020)

    Article  Google Scholar 

  55. Liu, J.X., Song, H.L., Zhang, Y.H.: Toward imperfection-insensitive soft network materials for applications in stretchable electronics. ACS Appl. Mater. Interfaces. 11, 36100–36109 (2019)

    Article  Google Scholar 

  56. Chen, C., Lu, T.J., Fleck, N.A.: Effect of imperfections on the yielding of two-dimensional foams. J. Mech. Phys. Solids. 47, 2235–2272 (1999)

    Article  MATH  Google Scholar 

  57. Fleck, N.A., Qiu, X.M.: The damage tolerance of elastic-brittle, two-dimensional isotropic lattices. J. Mech. Phys. Solids. 55, 562–588 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Seiler, P.E., Tankasala, H.C., Fleck, N.A.: The role of defects in dictating the strength of brittle honeycombs made by rapid prototyping. Acta Mater. 171, 190–200 (2019)

    Article  Google Scholar 

  59. Pasini, D., Guest, J.K.: Imperfect architected materials: mechanics and topology optimization. MRS Bull. 44, 766–772 (2019)

    Article  Google Scholar 

  60. Ma, Y., Feng, X., Rogers, J.A., et al.: Design and application of “J-shaped” stress-strain behavior in stretchable electronics: a review. Lab Chip. 17, 1689–1704 (2017)

    Article  Google Scholar 

  61. Lee, C.H., Ma, Y., Jang, K.-I., et al.: Soft core/shell packages for stretchable electronics. Adv. Funct. Mater. 25, 3698–3704 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Institute for Guo Qiang, Tsinghua University (Grant No. 2019GQG1012). Y.Z. acknowledges support from the National Natural Science Foundation of China (Grant Nos. 11722217 and 11921002), the Tsinghua University Initiative Scientific Research Program (#2019Z08QCX10) and the Henry Fok Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Zhang.

Additional information

Executive Editor: Xi-Qiao Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhu, X., Shen, Z. et al. Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures. Acta Mech. Sin. 37, 1050–1062 (2021). https://doi.org/10.1007/s10409-021-01087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01087-x

Keywords

Navigation