Skip to main content

Advertisement

Log in

The antimalarial activity of Ru–chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have measured water/n-octanol partition coefficients, pK a values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium–π-arene–chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World malaria report (2008) World Health Organization, Geneva. http://www.who.int/malaria/wmr2008/

  2. Rosenthal PJ (ed) (2001) Antimalarial chemotherapy: mechanism of action, resistance and new directions in drug discovery. Humana Press, Totowa

  3. Egan TJ (2008) Mol Biochem Parasitol 157:127–136

    Article  PubMed  CAS  Google Scholar 

  4. Egan TJ (2008) J Inorg Biochem 102:1288–1299

    Article  PubMed  CAS  Google Scholar 

  5. Egan TJ, Marques HM (1999) Coord Chem Rev 190–192:493–517

    Article  Google Scholar 

  6. Weissbuch I, Leiserowitz L (2008) Chem Rev 108:4899–4914

    Article  PubMed  CAS  Google Scholar 

  7. Sanchez C, McLean JE, Rohrbach P, Fidock DA, Stein WD, Lanzer M (2005) Biochemistry 44:9862–9870

    Article  PubMed  CAS  Google Scholar 

  8. Sanchez C, McLean JE, Stein WD, Lanzer M (2004) Biochemistry 43:16365–16373

    Article  PubMed  CAS  Google Scholar 

  9. van Schalkwyk DA, Egan TJ (2006) Drug Resist Updat 9:211–226

    Article  PubMed  Google Scholar 

  10. Warhurst DC (2003) Malar J 2:31–43

    Article  PubMed  Google Scholar 

  11. Warhurst DC, Craig JC, Adagu IS, Meyer DJ, Lee SY (2003) Malar J 2:26–30

    Article  PubMed  Google Scholar 

  12. Aweeka FT, German PI (2008) Clin Pharmacokinet 47:91–102

    Article  PubMed  CAS  Google Scholar 

  13. Sánchez-Delgado RA, Navarro M, Pérez H, Urbina JA (1996) J Med Chem 39:1095–1099

    Article  PubMed  Google Scholar 

  14. Martínez A, Rajapakse CSK, Naoulou B, Kopkalli Y, Davenport L, Sánchez-Delgado RA (2008) J Biol Inorg Chem 13:703–712

    Article  PubMed  Google Scholar 

  15. Navarro M, Pérez H, Sánchez-Delgado RA (1997) J Med Chem 40:1937–1939

    Article  PubMed  CAS  Google Scholar 

  16. Navarro M, Vásquez F, Sánchez-Delgado RA, Pérez H, Sinou V, Schrevel J (2004) J Med Chem 47:5204–5209

    Article  PubMed  CAS  Google Scholar 

  17. Navarro M, Pekerar S, Pérez H (2007) Polyhedron 26:2420–2424

    Article  CAS  Google Scholar 

  18. Biot C, Glorian G, Maciejewski LA, Brocard JS, Domarle O, Blampain G, Millet P, Georges AJ, Abessolo H, Dive D (1997) J Med Chem 40:3715–3718

    Article  PubMed  CAS  Google Scholar 

  19. Dive D, Biot C (2008) Chem Med Chem 3:383–391

    PubMed  CAS  Google Scholar 

  20. Blackie MAL, Beagley P, Croft SL, Kendrick H, Moss JR, Chibale K (2008) Bioorg Med Chem 15:6510–6516

    Article  Google Scholar 

  21. Beagley P, Blackie MAL, Chibale K, Clarkson C, Meijboom R, Moss JR, Smith PJ, Su H (2003) J Chem Soc Dalton Trans 3046–3051

  22. Beagley P, Blackie MAL, Chibale K, Clarkson C, Moss JR, Smith PJ (2002) J Chem Soc Dalton Trans 4426–4433

  23. Rajapakse CSK, Martínez A, Naoulou B, Jarzecki AA, Suárez L, Deregnaucourt C, Sinou V, Schrevel J, Musi E, Ambrosini G, Schwartz GK, Sánchez-Delgado RA (2009) Inorg Chem 48:1122–1131

    Article  PubMed  CAS  Google Scholar 

  24. Egan TJ, Mavuso WW, Ross D, Marques HM (1997) J Inorg Biochem 68:137–145

    Article  PubMed  CAS  Google Scholar 

  25. Biot C, Taramelli D, Forfar-Bares I, Maciejewski LA, Boyce M, Nowogrocki G, Brocard JS, Basilico N, Olliaro P, Egan TJ (2005) Mol Pharm 2:185–193

    Article  PubMed  CAS  Google Scholar 

  26. Parapini S, Basilico N, Pasini E, Egan TJ, Olliaro P, Taramelli D, Monti D (2000) Exp Parasitol 96:249–256

    Article  PubMed  CAS  Google Scholar 

  27. Egan TJ, Chen JY-J, de Villiers KA, Mabotha TE, Naidoo KJ, Ncokazi KK, Langford SJ, McNaughton D, Pandiancherri S, Word BR (2006) FEBS Lett 580:5105–5110

    Article  PubMed  CAS  Google Scholar 

  28. OECD guidelines for testing of chemicals (1995) no 107, OECD, Paris

  29. Danielsson LG, Zhang YH (1996) Trends Anal Chem 15:188–196

    CAS  Google Scholar 

  30. Rappel C, Galanski M, Yasemi A, Habala L, Keppler B (2005) Electrophoresis 26:878–884

    Article  PubMed  CAS  Google Scholar 

  31. Biot C, Chavain N, Dubar F, Pradines B, Trivelli X, Brocard J, Forfar I, Dive D (2008). doi:10.1016/j.jorganchem.2008.09.33 (in press)

Download references

Acknowledgments

Financial support from the NIH through grants1S06GM 076168-04 and MARC GM08078 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Sánchez-Delgado.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, A., Rajapakse, C.S.K., Jalloh, D. et al. The antimalarial activity of Ru–chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces. J Biol Inorg Chem 14, 863–871 (2009). https://doi.org/10.1007/s00775-009-0498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0498-4

Keywords

Navigation