Skip to main content

Advertisement

Log in

Provenance of Upper Devonian clastic (meta)sediments of the Böllstein Odenwald (Mid-German-Crystalline-Zone, Variscides)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Detrital zircons separated from paragneisses of the northern Böllstein Odenwald (Mid-German Crystalline Zone, Variscides) yielded Cambrian to Upper Devonian U–Pb ages. The age of the youngest detrital zircon population (371 ± 3 Ma) and the Lower Carboniferous metamorphic overprint indicate an Upper Devonian depositional age of the paragneiss protolith. The age spectra of detrital zircons suggest the latter to be derived from (1) Ordovician igneous rocks of the Saxothuringian Zone, (2) a late Cadomian magmatic arc (Teplá-Barrandian Unit) and (3) a Silurian-Devonian magmatic arc. Cadomian igneous activity is also documented by Cambrian zircon cores in Lower to Middle Devonian detrital zircons. Meso- and Paleoproterozoic detrital zircons, which are typical for the Old Red Continent and the Rhenohercynian Zone, are entirely lacking. The restricted Palaeozoic detrital zircon age spectrum is attributed to a Silurian-Devonian intra arc or trench setting. Both the lack of Mesoproterozoic detrital zircons and the striking similarity of the U–Pb ages of the detrital zircon obtained from the Böllstein Odenwald with U–Pb ages from crystalline rocks of the Saxothuringian basement, rules out that the Böllstein Odenwald is forming a tectonic window (Rhenohercynian lower plate) inside the Mid-German Crystalline Zone (Saxothuringian upper plate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam JF, Reuter A (1981) Das Paläozoikum von Erbendorf (NE Bayern) Ergebnisse einer Neukartierung. Thesis, Universität Göttingen, pp 1–63

  • Altenberger U, Besch T (1993) The Böllstein Odenwald: evidence for pre- to early Variscan plate convergence in the Central European Variscides. Geol Rundsch 82:475–488

    Article  Google Scholar 

  • Altenberger U, Besch T, Mocek B, Zaipeng Y, Yong S (1990) Geochemie und Geodynamik des Böllsteiner Odenwaldes. Mainzer Geow Mitt 19:183–200

    Google Scholar 

  • Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143

    Article  Google Scholar 

  • Bowes DR, Aftalion M, (1991) U–Pb zircon isotope evidence of Early Ordovician and Late Proterozoic units in the Mariánské Lázně Complex, Central European Hercynides. N Jb Mineral Mh 7:315–326

    Google Scholar 

  • Bradley DC (2011) Secular trends in the geologic record and the supercontinent cycle. Earth Sci Rev 108:16–33; doi:10.1016/j.earscirev.2011.05.003

    Article  Google Scholar 

  • Brinkmann R (1948) Die mitteldeutsche Schwelle. Geol Rundsch 36:55–66

    Google Scholar 

  • Chatterjee ND (1960) Geologische Untersuchungen im Kristallin des Böllsteiner Odenwaldes. N Jb Geol Pal Abh 111:137–180

    Google Scholar 

  • Cocks LRM, Fortey RA (2009) Avalonia—a long-lived terrane in the Lower Palaeozoic? Geol Soc Lond Spec Publ 325:141–154

    Article  Google Scholar 

  • Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. In: Gee DG, Stephenson RA (eds) 2006. European Lithosphere Dynamics. Geol Soc London Memoirs, vol 32, pp 83–95

  • Dias da Silva í, Díez Fernández R, Díez–Montes A, González Clavijo E, David A, Foster DA (2016) Magmatic evolution in the N–Gondwana margin related to the opening of the Rheic Ocean—evidence from the Upper Parautochthon of the Galicia–Trás–os–Montes Zone and from the Central Iberian Zone (NW Iberian Massif). Int J Earth Sci 105:1127–1151. doi:10.1007/s00531-015-1232-9

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125

    Article  Google Scholar 

  • Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundsch 84:399–411

    Article  Google Scholar 

  • Dörr W (1986) Stratigraphie, Stoffbestand und Fazies der Giessener Grauwacke (E’ Rheinisches Schiefergebirge). Diss Universität Giessen, pp 1–134

  • Dörr W, Pique A, Franke W, Kramm U (1992) Les galets granitiques du conglomerat de Russ (Devono-Dinantien des Vosges du Nord) sont les temoins d’un magmatisme acide ordovicien. La distension crustale et le rifting saxothuringien au Paleozoique inferieur. C R Acad Sci Paris t 315 Serie II:587–594

    Google Scholar 

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the BohemianMassif (Czech Republic). Geol Rundschau 87:135–149

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Article  Google Scholar 

  • Dörr W, Zulauf G, Gerdes A, Yann Lahayec, Gotthardt Kowalczyk (2015) A hidden Tonian basement in the eastern Mediterranean: Age constraints from U–Pb data of magmatic and detrital zircons of the External Hellenides (Crete and Peloponnesus). Precambrian Res 258:83–108

    Article  Google Scholar 

  • Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic–Early Paleozoic volcano-sedimentary successions of the Teplá–Barrandian unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geol Sax 54:1–165.

    Google Scholar 

  • Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2010) Provenance of Neoproterozoic and early siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231

    Article  Google Scholar 

  • Eckelmann K, Nesbor D, Königshof P, Linnemann U, Hofmann M, Lange J-M, Sagawe A (2013) Plate interactions of Laurussia and Gondwana during the formation of Pangaea—Constraints by U–Pb LA–SF–ICP–MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Res 25:1484–1500

    Article  Google Scholar 

  • Fernández-Suárez J, Gutiérrez-Alonso G, Pastor-Galán D, Hoffmann M, Murphy JB, Linnemann U (2013) The Ediacaran–Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. Int J Earth Sci. doi:10.1007/s00531-013-0923-3

    Google Scholar 

  • Franke W, Dulce JC (2016) Back to sender: tectonic accretion and recycling of Baltica-derived Devonian clastic sediments in the Rheno-Hercynian Variscides. Int J Earth Sci. doi:10.1007/s00531-016-1408-y

    Google Scholar 

  • Frei D, Gerdes A (2008) Accurate and precise in-situ zircon U–Pb age dating with high spatial resolution and high sample through put by automated LA-SF-ICP-MS. Chem Geol 261(3–4):261–270

    Google Scholar 

  • Geisler T, Vinx R, Martin-Gombojav N, Pidgeon RT (2005) Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci (Geol Rundsch) 94:369–384

    Article  Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  • Goffette O, Liégeois JP, André L (1991) Age U–Pb sur zircon dévonien moyen à supérieur du magmatisme bimodal du Massif de Rocroi (Ardenne, France): implications géodynamiques. Comptes Rendus de l’Académie des Sciences de Paris 312: 1155–1161 (Série II)

    Google Scholar 

  • Hajna J, Zak J, Kachlik V, Dörr W, Gerdes A (2013) Neoproterozoic to early Cambrian Franciscan-type melanges in the Teplá–Barrandian unit, Bohemian Massif: evidence of modern-style accretionary processes along the Cadomian active margin of Gondwana? Precambrian Res 224:653–670

    Article  Google Scholar 

  • Hajna J, Zak J, Dörr W (2016) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Res. doi:10.1016/j.gr.2016.10.004

    Google Scholar 

  • Hartmann LA, Santos JOS (2004) Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. Geology 32:73–76

    Article  Google Scholar 

  • Haverkamp J (1991) Detritusanalyse unterdevonischer Sandsteine des Rheinisch-Ardennischen Schiefergebirges und ihre Bedeutung für die Rekonstruktion der sedimentliefernden Hinterländer. Thesis Techn Univ Aachen, pp 156

  • Heinrichs T, Siegesmund S, Frei D, Drobe M, Schulz B (2012) Provenance signatures from whole-rock geochemistry and detrital zircon ages of metasediments from the Austroalpine basement south of the Tauern Window (Eastern Tyrol, Austria). Geo Alp 9:156–185

    Google Scholar 

  • Henningsen D (1966) Die paläozoischen Grauwacken bei Gießen und ihre Fortsetzung unter der Hessischen Senke. Ber oberhess Ges Natur- u Heilkde Gießen. N R naturwiss Abt 34(1–2):19–31

    Google Scholar 

  • Hess J and Schmidt G (1989) Zur Altersstellung der Kataklasite im Bereich der Otzberg-Zone, Odenwald. Geol Jb Hessen 117:69–77

    Google Scholar 

  • Hughes RA, Evans JA, Noble SR, Rundle CC (1996) U–Pb chronology of the Ennerdale and Eskdale intrusions supports subvolcanic relationships with the Borrowdale Volcanic Group (Ordovician, English Lake District). J Geol Soc Lond 153:33–38

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Klügel T (1997) Geometrie und Kinematik einer variszischen Plattengrenze. Der Südrand des Rhenoherzynikums im Taunus. Geol Abh Hessen 101:215

    Google Scholar 

  • Knauer E, Okrusch M, Richter P, Schmidt K, Schubert W (1974) Die metamorphe Basit-Ultrabasit-Assoziation in der Böllsteiner Gneiskuppel, Odenwald. N Jb Miner Abh 122:186–228

    Google Scholar 

  • Korn D (1929) Tektonische und gefügeanalytische Untersuchungen im Grundgebirge des Böllsteiner Odenwaldes. N Jb Miner Abh LV BB 62 Abt B:171–234

    Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh d Sächs Geol Landesamts 1:1–39

    Google Scholar 

  • Kramm U, Buhl D (1985) U–Pb zircon dating of the Hell tonalite, Venn-Stavelot Massif, Ardennes. N Jb Geol Paläont Abh 171:329–337

  • Kreuzer H and Harre W (1975): K/Ar-Altersbestimmungen an Hornblenden und Biotiten des Kristallinen Odenwaldes. In: Amstutz G.C, Meisl S, Nickel E (ed) Mineralien und Gesteine im Odenwald (Aufschluß Sonderband 27), pp 71–77

  • Kreuzer H, Seidel E (1989) Diskrete früh-devonische Ar-Ar-Alter der Hangend-Serie (Münchberger Gneismasse). Ber Dtsch Min Ges Eur J Mineral 1 (Beih1):103

  • Kreuzer H, Seidel E, Schüssler U, Okrusch M, Lenz K-L, Raschka H (1989) K–Ar geochronology of different tectonic units at the northwestern margin of the Bohemian massif. Tectonophysics 157:149–178

    Article  Google Scholar 

  • Krohe A (1992) Structural evolution of intermediate-crustal rocks in a strike slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 205:357–386

    Article  Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerske hory, Krkonose Mountains and Orlice-Sneznik Complex). Int J Earth Sci 90:304–324

    Article  Google Scholar 

  • Linnemann U (2003) Sedimentation und geotektonischer Rahmen der Beckenentwicklung im Saxothuringikum (Neoproterozoikum – Unterkarbon. In: Linnemann U (ed) Das Saxothuringikum. Geologica Saxonica, vol 48/49, pp 71–110

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd isotopic record. Int J Earth Sci 93:683–705

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian Orogenesis and opening of the Rheic Ocean: constraints from LA–ICP–MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, NE Bohemian massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian Active Margin to Alleghenian–Variscan collision. Geol Soc America Special Paper, vol 423, pp 61–96

  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Article  Google Scholar 

  • Linnemann U, Herbosch A, Liégeois, J-P, Pin C, Gärtner A, Hofmann M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth Sci Rev 112:126–154

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Mandy Hofmann M, Marko L (2013) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustalgrowth and orogenic zoning along the periphery of the West AfricanCraton—Constraints from U–Pb zircon ages and Hf isotopes(Schwarzburg Antiform, Germany). Precambrian Res 244:236–278

    Article  Google Scholar 

  • Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb-Sr) und karbonischer Abkühlungsalter (K-Ar) der Muskovit-Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol Rundsch 75(3):569–583

    Article  Google Scholar 

  • Loeckle F, Zulauf G, Nesbor HD (2016) Microfabrics of crystalline rocks from the drilling projects Gross- Umstadt-Heubach and Wiebelsbach (Bollsteiner Odenwald): Constraints on deformation mechanisms, metamorphic temperature and kinematics. Z Dt Ges Geowiss 167:1–17

  • Ludwig R (2001) User’s manual for Isoplot/Ex Version 2 49, A Geochronological Toolkit for Microsoft Excel. Berkley Geochronology Center Special Publication 1a. Berkley Ca USA

  • Murphy JB, Fernández-Suárez J, Jeffries T, Strachan RA (2004a) U–Pb (LA–ICP-MS) dating of detrital zircons from Cambrian clastic rocks in Avalonia: erosion of a Neoproterozoic arc along the northern Gondwanan margin. J Geol Soc London 161:243–254

    Article  Google Scholar 

  • Murphy JB, Pisarevsky SA, Nance .D, Keppie JD (2004b) Neoproterozoic–Early Palaeozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci 93:659–682

    Article  Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández- Suárez J, Quesada C, Linnemann U, D’Lemos RS, Pisarevsky SA (2008) Neoproterozoic–early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian versus West African connections. In: Nasser E, Liégeois J-P (eds), The Boundaries of the West African Craton: Geol Soc London, Special Publications, vol 297, pp 345–383

  • O’Brien SJ, O’Brien BH, Dunning GR, Tucker RD (1996) Late Neoproterozoic Avalonian and related peri-Gondwana rocks of the Newfoundland Appalachians. In: Nance RD, Thompson MD (eds), Avalonian and Related Peri-Gondwana Terranes of the Circum-North Atlantic. Geol Soc America, Special Paper, vol 304, pp 9–28

  • Ogg JG (2004a) The triassic period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press Cambridge:271–306

  • Ogg JG, (2004b) The jurassic period. In: Gradstein FM, Ogg J, Smith AG (eds) A geologic time scale 2004 Cambridge. University Press Cambridge:307–343

  • Okrusch M, Richter P (1986) Orthogneisses of the Spessart crystalline complex, Northwest Bavaria: Indicators of the geotectonic environment? Geol Rundsch 75:555–568

    Article  Google Scholar 

  • Okrusch M, Geyer G, Lorenz J (2011) Sammlung geol Führer 106: Spessart: 386, Berlin (Borntraeger)

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and it’s consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundschau 86:2–20

    Article  Google Scholar 

  • Pereira MF, Linnemann U, Hofmann M, Chichorro M, Solá AR, Medina J, Silva JB (2012) The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: Constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic. Precambrian Res 192–195:166–189

    Article  Google Scholar 

  • Ramdohr P (1922) Die ‘Gabbros’ des Böllsteiner Gebietes. Notizbl d Ver f Erdk u d hess geol Landesanst z Darmst 5:149–193

    Google Scholar 

  • Reischmann T, Anthes G, Jaekel P, Altenberger U (2001) Age and origin of the Böllsteiner Odenwald. Miner Petrol 72:29–44

    Article  Google Scholar 

  • Reitz E (1989) Devonische Sporen aus Phylliten vom Südrand des Rheinischen Schiefergebirges. Geol Jb Hessen 117:23–35

    Google Scholar 

  • Schäfer J (1997) Rapid exhumation of medium to high-pressure metamorphic rocks at the Saxothuringian Moldanubian boundary: Evidence from detrital white micas in Saxothuringian Synorogenic sediments (E Variscides, Germany). N Jb Geol Paläont Abh 206 3:343–364

    Google Scholar 

  • Schäfer J, Neuroth H, Ahrendt H, Dörr W, Franke W (1997) Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch. Geol Rundschau 86:599–611

    Article  Google Scholar 

  • Scherer EE, Mezger K, Münker C (2002) Lu-Hf ages of high pressure metamorphism in the Variscan fold belt of southern Germany. Goldschmidt Conference Abstracts 2002. Geochi Cosmochi Acta Suppl 66:A677

  • Söllner F, Köhler H, Müller-Sohnius D (1981) Rb/Sr-Altersbestimmungen an Gesteinen der Münchberger Gneismasse (MM), NE Bayern—Teil 2, Mineraldatierungen. N Jahrb Miner Abh 142(2):178–198

    Google Scholar 

  • Sommermann A E, Meisl S, Todt W (1992) Zirkonalter von drei verschiedenen Metavulkaniten aus dem Südtaunus. Geol Jb Hessen 120:67–76

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  • Stein E (1996) Untersuchungen zur Genese der Flasergranitoid-Zone des zentralen Odenwaldes—Magmatische und/oder tektonische Gefüge. Z geol Wiss 24 5/6:573–583

    Google Scholar 

  • Stein E (2001) The geology of the Odenwald crystalline complex. Mineral Petrol 72:7–28

    Article  Google Scholar 

  • Stein E, Altenberger U, Kreher-Hartmann B (2001) Geologie des Kristallinen Odenwaldes—seine magmatische und metamorphe Entwicklung (Exkursion D1 am 19. und D2 am 20. April 2001). Jahresber u Mitt d Oberrh Geol Ver, N.F 83:89–111

    Google Scholar 

  • Stibane FR, Dörr W, Michel H (1984) Zur stratigraphischen Stellung der Giessener Grauwacke (Rheinisches Schiefergebirge). N Jb Geol Paläont Mh 3:173–178

    Google Scholar 

  • Tait JA, Bachtadse V, Franke V, Soffel HC (1997) Geodynamic evolution of the European Variscan Foldbelt: Palaeomagnetic and geological constraints. Geol Rundschau 86:585–598

    Article  Google Scholar 

  • Tait JA, Schatz M, Bachtadse V, Soffel H 2000 Palaeomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc, London Special Publications, vol 179, pp 21–34

  • Teufel S (1988) Vergleichende U–Pb– und Rb–Sr-Altersbestimmungen an Gesteinen des Übergangsbereiches Saxothuringikum/Moldanubikum, NE-Bayern. Göttinger Arbeiten zur Geologie und Paläontologie 35: 1–87

    Google Scholar 

  • Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U-Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338

  • Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Inter J Earth Sci 95:629–647

  • Todt WA, Altenberger U, von Raumer J (1995) U–Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany Geol Rundschau 84:466–472

    Google Scholar 

  • Torsvik TH, Cocks LRM (2013) Gondwana from top to base in space and time. Gondwana Res 24:999–1030

    Article  Google Scholar 

  • Torsvik TH, Rehnström F (2003) The Tornquist Sea and Baltica–Avalonia docking. Tectonophysics 362:67–82

    Article  Google Scholar 

  • von Bubnoff S (1926) Studien im südwestdeutschen Grundgebirge II. Die tektonische Stellung des Böllsteiner Odenwaldes und des Vorspessarts. N Jb Miner Abh LV BB 55 Abt B:486–496

    Google Scholar 

  • von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22

    Article  Google Scholar 

  • Weber K (1995) The spessart crystalline complex. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern europe (Chapter IV: Mid-German Crystalline High),vol 604. Springer, Berlin, pp 167–173

    Chapter  Google Scholar 

  • Weber K, Juckenack C (1990) The structure of the Spessart mts crystalline basement and its position in the frame of the mid-european variscides. In: Franke W (ed) Mid-German crystalline rise & Rheinisches Schiefergebirge: field guide to pre-conference excursion, geology and geophysics (Göttingen-Gießen), pp 101–114

  • Wickert F and Eisbacher GH (1988) Two-sided Variscan thrust tectonics in the Vosges Mountains, north eastern France. Geodin Acta (Paris) 2 (3):101–120

    Article  Google Scholar 

  • Wiedenbeck M, All P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace elements and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Will TM, Schmädicke E (2001) A first report of retrogressed eclogites in the Odenwald Crystalline Complex: evidence for high-pressure metamorphism in the Mid-German Crystalline Rise, Germany. Lithos 59:109–125

    Article  Google Scholar 

  • Will TM, Schmädicke E (2003) Isobaric cooling and anti-clockwise P–T paths in the Variscan Odenwald crystalline complex. J Metamor Geol 21:469–480

    Article  Google Scholar 

  • Will TM, Lee S-H, Schmädicke E, Frimmel HE, Okrusch M (2015) Variscan terrane boundaries in the Odenwald–Spessart basement, Mid-German Crystalline Zone: new evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos 220–223:23–42

    Article  Google Scholar 

  • Willner AP, Massone H-J, Krohe A (1991) Tectono-thermal evolution of a part of a Variscan magmatic arc: the Odenwald in the Mid-German Crystalline Rise. Geol Rundsch 80:369–389

    Article  Google Scholar 

  • Willner AP, Barr SM, Gerdes A, Massonne HJ, White CE (2013) Origin and evolution of Avalonia: evidence from U–Pb and Lu–Hf isotopes in zircon from the Mira terrane, Canada, and the Stavelot–Venn Massif, Belgium. J Geol Soc London 170:769–784

    Article  Google Scholar 

  • Winchester JA, Pharaoh TC, Verniers J (2002) Palaeozoic Amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:237–277

    Article  Google Scholar 

  • Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society of London, Memoirs, London, pp 323–332

  • Zeh A, Gerdes A (2009) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): Implications for the closure of the Rheic ocean. Gondwana Res 17:254–263

    Article  Google Scholar 

  • Zeh A, Will TM (2010) The Mid-German Crystalline Rise. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 195–220

    Google Scholar 

  • Zelazniewicz A, Dörr W, Bylina P, Franke W, ·Haack U, Heinisch H, Schastok J, Grandmontagne N, Kulicki C (2004) The eastern continuation of the Cadomian orogen: U–Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. Int J Earth Sci (Geol Rundsch) 93:773–781

    Article  Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian massif, Central European Variscides). Geol Rundsch 86:571–584

    Article  Google Scholar 

  • Zulauf G, Dörr W, Fisher-Spurlock SC, Gerdes A, Chatzaras V, Xypolias P (2014) Closure of the Paleotethys in the External Hellenides: constraints from U–Pb ages of magmatic and detrital zircons (Crete). Gondwana Res. doi:10.1016/j.gr.2014.06.011

    Google Scholar 

Download references

Acknowledgements

We are grateful to Janina Schastok, Linda Marko (Universität Frankfurt a.M.) and Dieter Nesbor (HLUG, Wiesbaden) for their invaluable help and fruitful discussions. The quality of the paper was improved by the comments of Uwe Altenberger (Potsdam) and of an anonymous reviewer. All of these are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Dörr.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörr, W., Zulauf, G., Gerdes, A. et al. Provenance of Upper Devonian clastic (meta)sediments of the Böllstein Odenwald (Mid-German-Crystalline-Zone, Variscides). Int J Earth Sci (Geol Rundsch) 106, 2927–2943 (2017). https://doi.org/10.1007/s00531-017-1473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1473-x

Keywords

Navigation