Skip to main content
Log in

Prediction of air pollutants PM10 by ARBX(1) processes

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This work adopts a Banach-valued time series framework for component-wise estimation and prediction, from temporal correlated functional data, in presence of exogenous variables. The strong-consistency of the proposed functional estimator and associated plug-in predictor is formulated. The simulation study undertaken illustrates their large-sample size properties. Air pollutants PM10 curve forecasting, in the Haute-Normandie region (France), is addressed by implementation of the functional time series approach presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2016) Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck in Hilbert and Banach spaces. Stat Probab Lett 117:12–22

    Google Scholar 

  • Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2017) Asymptotic properties of a componentwise ARH(1) plug-in predictor. J Multivar Anal 155:12–34

    Google Scholar 

  • Aneiros-Pérez G, Vieu P (2008) Nonparametric time series prediction: a semi-functional partial linear modeling. J Multivar Anal 99:834–857

    Google Scholar 

  • Angelini C, De Candittis D, Leblanc F (2003) Wavelet regression estimation in nonparametric mixed effect models. J Multivar Anal 85:267–291

    Google Scholar 

  • Antoniadis A, Sapatinas T (2003) Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes. J Multivar Anal 87:133–158

    Google Scholar 

  • Besse PC, Cardot H, Stephenson DB (2000) Autoregressive forecasting of some functional climatic variations. Scand J Stat 27:673–687

    Google Scholar 

  • Blanke D, Bosq D (2016) Detecting and estimating intensity of jumps for discretely observed ARMAD(1,1) processes. J Multivar Anal 146:119–137

    Google Scholar 

  • Bohorquez M, Giraldo R, Mateu J (2017) Multivariate functional random fields: prediction and optimal sampling. Stoch Environ Res Risk Assess 31:53–70

    Google Scholar 

  • Bosq D (2000) Linear processes in function spaces. Springer, New York

    Google Scholar 

  • Bueno-Larraz B, Klepsch J (2018) Variable selection for the prediction of \(C[0,1]\)-valued AR processes using RKHS. arXiv:1710.06660

  • Damon J, Guillas S (2002) The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13:759–774

    CAS  Google Scholar 

  • Damon J, Guillas S (2005) Estimation and simulation of autoregressie Hilbertian processes with exogenous variables. Stat Inference Stoch Process 8:185–204

    Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets, vol 61. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia

    Google Scholar 

  • Dehling H, Sharipov OS (2005) Estimation of mean and covariance operator for Banach space valued autoregressive processes with dependent innovations. Stat Inference Stoch Process 8:137–149

    Google Scholar 

  • Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239

    Google Scholar 

  • El Hajj L (2011) Limit theorems for \({\cal{D}}([0,1])\)-valued autoregressive processes. C R Acad Sci Paris Sér I Math 349:821–825

    Google Scholar 

  • Febrero-Bande M, Galeano P, González-Manteiga W (2008) Outlier detection in functional data by depth measures with application to identify abnormal NO\(_x\) levels. Environmetrics 19:331–345

    Google Scholar 

  • Fernández de Castro BM, González-Manteiga W, Guillas S (2005) Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics 47:212–222

    Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    Google Scholar 

  • Geenens G (2011) Curse of dimensionality and related issues in nonparametric functional regression. Stat Surv 5:30–43

    Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2010) Geostatistics for functional data: an ordinary kriging approach. Environ Ecol Stat 18:411–426

    Google Scholar 

  • Gocheva-Ilieva S, Ivanov A, Voynikova D, Boyadzhiev D (2014) Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch Environ Res Risk Assess 28:1045–1060

    Google Scholar 

  • Goia A, Vieu P (2015) A partitioned single functional index model. Comput Stat 30:673–692

    Google Scholar 

  • Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal 146:1–6

    Google Scholar 

  • Grivas G, Chaloulakou A (2006) Artificial neural network models for prediction of PM10 hourly concentrations in the greater area of Athens, Greece. Atmos Environ 40:1216–1229

    CAS  Google Scholar 

  • Guillas S (2002) Doubly stochastic Hilbertian processes. J Appl Probab 39:566–580

    Google Scholar 

  • He H-D, Lu W-Z, Xue Y (2015) Prediction of particulate matters at urban intersection by using multilayer perceptron model based on principal components. Stoch Environ Res Risk Assess 29:2107–2114

    Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, New York

    Google Scholar 

  • Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for functional data for air quality monitoring. Stoch Environ Res Risk Assess 28:1171–1186

    Google Scholar 

  • Kuelbs J (1970) Gaussian measures on a Banach space. J Funct Anal 5:354–367

    Google Scholar 

  • Labbas A, Mourid T (2002) Estimation et prévision d’un processus autorégressif Banach. C R Acad Sci Paris Sér I 335:767–772

    Google Scholar 

  • Marion JM, Pumo B (2004) Comparaison des modéles ARH(1) et ARHD(1) sur des données physiologiques. Ann ISUP 48:29–38

    Google Scholar 

  • Mas A (2004) Consistance du prédicteur dans le modèle ARH\((1)\): le cas compact. Ann ISUP 48:39–48

    Google Scholar 

  • Mas A (2007) Weak-convergence in the functional autoregressive model. J Multivar Anal 98:1231–1261

    Google Scholar 

  • Moritz S, Bartz-Beielstein T (2017) imputeTS: time series missing value imputation in R. R J 9:207–218

    Google Scholar 

  • Nerini D, Monestiez P, Mantea C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409–418

    Google Scholar 

  • Pang W, Christakos G, Wang J-F (2009) Comparative spatiotemporal analysis of fine particulate matter pollution. Environmetrics 21:305–317

    Google Scholar 

  • Parvardeh A, Jouzdani NM, Mahmoodi S, Soltani AR (2017) First order autoregressive periodically correlated model in Banach spaces: existence and central limit theorem. J Math Anal Appl 449:756–768

    Google Scholar 

  • Paschalidou AK, Karakitsios S, Kleanthous S, Kassomenos PA (2011) Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18:316–327

    CAS  Google Scholar 

  • Ruiz-Medina MD (2011) Spatial autorregresive and moving average Hilbertian processes. J Multivar Anal 102:292–305

    Google Scholar 

  • Ruiz-Medina MD, Álvarez-Liébana J (2019) A note on strong-consistency of componentwise ARH(1) predictors. Stat Probab Lett 145:224–248

    Google Scholar 

  • Ruiz-Medina MD, Álvarez-Liébana J (2019) Strongly consistent autoregressive predictors in abstract Banach spaces. J Multivar Anal. https://doi.org/10.1016/j.jmva.2018.08.001

    Article  Google Scholar 

  • Ruiz-Medina MD, Espejo RM (2012) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk Assess 26:335–344

    Google Scholar 

  • Ruiz-Medina MD, Espejo RM, Ugarte MD, Militino AF (2014) Functional time series analysis of spatio-temporal epidemiological data. Stoch Environ Res Risk Assess 28:943–954

    Google Scholar 

  • Slini T, Kaprara A, Karatzas K, Mousiopoulos N (2006) PM10 forecasting for Thessaloniki, Greece. Environ Model Softw 21:559–565

    Google Scholar 

  • Stadlober E, Hormann S, Pfeiler B (2008) Quality and performance of a PM10 daily forecasting model. Atmos Environ 42:1098–1109

    CAS  Google Scholar 

  • Triebel T (1983) Theory of function spaces II. Birkhauser, Basel

    Google Scholar 

  • Vieu P (2018) On dimension reduction models for functional data. Stat Prob Lett 136:134–138

    Google Scholar 

  • Zhang L, Liu Y, Zhao F (2018) Singular value decomposition analysis of spatial relationships between monthly weather and air pollution index in China. Stoch Environ Res Risk Assess 32:733–748

    Google Scholar 

  • Zolghadri A, Cazaurang F (2006) Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations. Environ Model Softw 21:885–894

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by projects MTM2015–71839–P and PGC2018-099549-B-I00 (co-funded by Feder funds), of the DGI, MINECO, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ruiz-Medina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It is well-known that Besov spaces, \(\left\{ \left( {\mathcal{B}}_{p,q}^{r}, \left\| \cdot \right\| _{p,q}^{r} \right) , \ r \in {\mathbb{R}},~1 \le p,q \le \infty \right\} \), and their norms can be characterized in terms of the wavelet transform (see, e.g., Triebel 1983). Specifically, for every \(f\in {\mathcal{B}}_{p,q}^{r}\),

$$\begin{aligned} \left\| f \right\| _{p,q}^{r} \equiv \left\| \varphi _{J} *f \right\| _p + \left[ \sum _{j=J}^{\infty } \left( 2^{j r} \left\| \psi _j*f \right\| _p \right) ^{q} \right] ^{1/q} < \infty , \end{aligned}$$
(31)

where \(\varphi \) and \(\psi \) denote the father and mother wavelets, whose translations and dilations provide a multiresolution analysis of a suitable space of square-integrable functions. Particularly, consider the space \(L^{2}([0,1])\), and its orthogonal decomposition from an \(\left( \lceil r \rceil + 1 \right) \)-regular Multiresolution Analysis, induced by an orthogonal basis of wavelets, for certain \(r>0\). Then, father and mother wavelets belong to \({\mathcal{C}}^{\left( \lceil r \rceil + 1 \right) } ([0,1])\). For every \(f\in L^{2}([0,1])\),

$$\begin{aligned} f(t) = \sum _{k = 0}^{ 2^J - 1} \alpha _{J,k}^{f} \varphi _{J,k} (t) + \sum _{j=J}^{K} \sum _{k=0}^{2^j - 1} \beta _{j,k}^{f} \psi _{j,k} (t), \quad t \in [0,1], \end{aligned}$$
(32)

where J is such that \(2^J \ge 2^{\left( \lceil r \rceil + 1 \right) }\), and for \(k=0,\ldots , 2^{j-1}, j=J,\ldots ,K\),

$$\begin{aligned} \alpha _{J,k}^{f}& = \int _{{\mathbb{R}}} f(x) \overline{\varphi _{J,k} (x)}dx, \quad \beta _{j,k}^{f} = \int _{{\mathbb{R}}} f(x) \overline{\psi _{j,k} (x)}dx \end{aligned}$$

(see Daubechies 1992). Here, K is the truncation parameter defining the last (or highest) resolution level considered in the finite-dimensional wavelet approximation (32).

As commented before, the following function spaces have been considered:

$$\begin{aligned} {\overline{B}}& = \left[ {\mathcal{B}}_{\infty ,\infty }^{0} ([0,1]) \right] ^{b+1}; \\ \widetilde{{\overline{H}}}& = \left[ H_{2}^{-\beta } ([0,1]) \right] ^{b+1}=\left[ {\mathcal{B}}_{2,2}^{-\beta }([0,1])\right] ^{b+1} \\ {\overline{H}}& = \left[ L^2 ([0,1])\right] ^{b+1}; \\ {\mathcal{H}}({\overline{X}})& = \prod _{i=1}^{b+1}H^{\gamma _{i}}_{2}([0,1])=\prod _{i=1}^{b+1}{\mathcal{B}}_{2,2}^{\gamma _{i} }([0,1]) \\ {\overline{B}}^{\star }& = \left[ {\mathcal{B}}_{1,1}^{0} ([0,1]) \right] ^{b+1}; \\ \widetilde{{\overline{H}}}^{\star }& = \left[ H_{2}^{\beta } ([0,1]) \right] ^{b+1}=\left[ {\mathcal{B}}_{2,2}^{\beta }([0,1])\right] ^{b+1} \\ {\overline{H}}^{\star }& = \left[ L^2 ([0,1])\right] ^{b+1}; \\ {[}{\mathcal{H}}({\overline{X}})]^{\star }& = \prod _{i=1}^{b+1}H^{-\gamma _{i}}_{2}([0,1])=\prod _{i=1}^{b+1}{\mathcal{B}}_{2,2}^{-\gamma _{i} }([0,1]), \end{aligned}$$
(33)

where the parameters \(\{\gamma _{i}\}_{i=1,\ldots ,b+1}\) reflect the second-order local regularity of the functional random components of \({\overline{X}}=\{{\overline{X}}_{n},\ n\in {\mathbb{Z}}\}\) in Eq. (5). From embedding theorems between Besov spaces, the following continuous inclusions hold (see Triebel 1983):

$$\begin{aligned} {\mathcal{H}}({\overline{X}})\hookrightarrow \widetilde{{\overline{H}}}^{*} \hookrightarrow {\overline{B}}^{*} \hookrightarrow {\overline{H}} \hookrightarrow {\overline{B}} \hookrightarrow \widetilde{{\overline{H}}}\hookrightarrow [{\mathcal{H}}({\overline{X}})]^{\star }, \end{aligned}$$
(34)

for \(\gamma _{i}>2\beta >1, i=1,\ldots ,b+1\). Thus, Assumptions A4–A5 are satisfied. The \({\overline{B}}\) and \({\overline{B}}^{\star }\) norms are then computed from the following identities: For every \({\overline{f}} = \left( f; f_{1},\ldots ,f_{b} \right) ,\ {\overline{g}} = \left( g; g_{1},\ldots , g_{b} \right) \in {\overline{B}}\subset \widetilde{{\overline{H}}}\),

$$\begin{aligned} \left\| {\overline{f}} \right\| _{{\overline{B}}}& = \sup _{j\ge J}\sup _{k =0,\ldots , 2^{j}-1} \sup \left( \left| \alpha _{J,k}^{f}\right| ,\left| \beta _{j,k}^{f}\right| , \sup _{i =1,\ldots , b}\left| \alpha _{J,k}^{f_{i}}\right| , \right. \\&\quad \left. \sup _{i =1,\ldots , b}\left| \beta _{j,k}^{f_{i}}\right| \right) \\ \left\| {\overline{g}} \right\| _{{\overline{B}}^{*}}& = \left[ \sum _{k=0}^{2^J-1} \left| \alpha _{J,k}^{g}\right| + \sum _{j=J}^{K} \sum _{k=0}^{2^j - 1} \left| \beta _{j,k}^{g}\right| \right] \\&\quad + \left[ \sum _{k=0}^{2^J-1} \sum _{i=1}^{b} \left| \alpha _{J,k}^{g_{i}}\right| + \sum _{j=J}^{K} \sum _{k=0}^{2^j - 1}\sum _{i=1}^{b} \left| \beta _{j,k}^{g_{i}}\right| \right] , \end{aligned}$$
(35)

where for \(f\in B\), and \(g\in B^{\star }\),

$$\begin{aligned} \left\| f \right\| _{B}& = \sup \left\{ \left| \alpha _{J,k}^{f}\right| ,~k =0,\ldots ,2^{J}-1; ~\left| \beta _{j,k}^{f}\right| ,\right. \\&\left. k=0,\ldots ,2^{j}-1,~j=J,\ldots ,K \right\} , \\ \left\| g \right\| _{B^{*}}& = \sum _{k =0}^{2^{J}-1} \left| \alpha _{J,k}^{g}\right| + \sum _{j=J}^{K} \sum _{k =0}^{2^{j}-1} \left| \beta _{j,k}^{g}\right| . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Liébana, J., Ruiz-Medina, M.D. Prediction of air pollutants PM10 by ARBX(1) processes. Stoch Environ Res Risk Assess 33, 1721–1736 (2019). https://doi.org/10.1007/s00477-019-01712-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01712-z

Keywords

Navigation