Skip to main content
Log in

A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A least squares recursive gradient meshfree collocation method is proposed for the superconvergent computation of structural vibration frequencies. The proposed approach employs the recursive gradients of meshfree shape functions together with smoothed shape functions in the context of least squares formulation, where both meshfree nodes and auxiliary points are taken as the collocation points. It turns out that this least squares formulation can effectively suppress the spurious modes arising from a direct meshfree collocation formulation using recursive gradients. Meanwhile, a detailed theoretical analysis with explicit frequency error measure is presented for the least squares recursive gradient meshfree collocation method in order to assess the frequency accuracy of structural vibrations. This analysis discloses the salient basis degree discrepancy issue regarding the frequency accuracy for the least squares meshfree collocation formulation, and it is shown that this issue can be essentially resolved by the proposed least squares recursive gradient meshfree collocation method. In fact, the proposed method leads to superconvergent vibration frequencies when odd degree basis functions are used, i.e., the frequency convergence rate is improved from \((p - 1)\) for the standard least squares meshfree collocation to \((p + 1)\) for the proposed approach in case of an odd pth degree basis function. This desirable frequency superconvergence of the proposed least squares recursive gradient meshfree collocation method is congruously demonstrated by numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  2. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  3. Zhang X, Liu Y (2004) Meshless methods. Tsinghua University Press, Springer, Berlin

    Google Scholar 

  4. Liu GR (2009) Meshfree methods: moving beyond the finite element method (2nd edition). CRC Press, Boca Raton

    Book  Google Scholar 

  5. Chen JS, Hillman M, Chi S (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143:04017001

    Article  Google Scholar 

  6. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astrophys J 82:1013–1024

    Google Scholar 

  7. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  8. Liu M, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  MathSciNet  MATH  Google Scholar 

  9. Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang X, Song K, Lu M, Liu X (2000) Meshless methods based on collocation with radial basis functions. Comput Mech 26:333–343

    Article  MATH  Google Scholar 

  11. Chen W, Tanaka M (2002) A meshless, integration-free, and boundary-only RBF technique. Comput Math Appl 43:379–391

    Article  MathSciNet  MATH  Google Scholar 

  12. Vertnik R, Sarler B (2006) Meshless local radial basis function collocation method for convective–diffusive solid-liquid phase change problems. Int J Numer Methods Heat Fluid Flow 16:617–640

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen JS, Wang LH, Hu HY, Chi SW (2009) Subdomain radial basis collocation method for heterogeneous media. Int J Numer Methods Eng 80:163–190

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu HY, Chen JS, Hu W (2010) Weighted radial basis collocation method for boundary value problems. Int J Numer Methods Eng 69:2736–2757

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang L, Wang Z, Qian Z (2017) A meshfree method for inverse wave propagation using collocation and radial basis functions. Comput Methods Appl Mech Eng 322:311–350

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao XW, Gao L, Zhang Y, Cui M, Lv J (2019) Free element collocation method: a new method combining advantages of finite element and mesh free methods. Comput Struct 215:10–26

    Article  Google Scholar 

  17. Yang JP, Chen YC (2020) Gradient enhanced localized radial basis collocation method for inverse analysis of Cauchy problems. Int J Appl Mech 12:2050107

    Article  Google Scholar 

  18. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  MATH  Google Scholar 

  19. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MathSciNet  MATH  Google Scholar 

  20. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MathSciNet  MATH  Google Scholar 

  23. Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866

    Article  MathSciNet  MATH  Google Scholar 

  24. Breitkopf P, Touzot G, Villon P (2000) Double grid diffuse collocation method. Comput Mech 25:199–206

    Article  MathSciNet  MATH  Google Scholar 

  25. Aluru NR (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Methods Eng 47:1083–1121

    Article  MATH  Google Scholar 

  26. Kim DW, Liu WK (2006) Maximum principle and convergence analysis for the meshfree point collocation method. SIAM J Numer Anal 44:515–539

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim DW, Liu WK, Yoon YC, Belytschko T, Lee SH (2007) Meshfree point collocation method with intrinsic enrichment for interface problems. Comput Mech 40:1037–1052

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen JS, Hu W, Hu HY (2008) Reproducing kernel enhanced local radial basis collocation method. Int J Numer Methods Eng 75:600–627

    Article  MathSciNet  MATH  Google Scholar 

  29. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part I-formulation and theory. Int J Numer Methods Eng 45:251–288

    Article  MATH  Google Scholar 

  30. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part II-applications. Int J Numer Methods Eng 45:289–317

    Article  Google Scholar 

  31. Chi SW, Chen JS, Hu HY, Yang JP (2013) A gradient reproducing kernel collocation method for boundary value problems. Int J Numer Methods Eng 93:1381–1402

    Article  MathSciNet  MATH  Google Scholar 

  32. Mahdavi A, Chi SW, Zhu H (2019) A gradient reproducing kernel collocation method for high order differential equations. Comput Mech 64:1421–1454

    Article  MathSciNet  MATH  Google Scholar 

  33. Qian Z, Wang L, Gu Y, Zhang C (2021) An efficient meshfree gradient smoothing collocation method (GSCM) using reproducing kernel approximation. Comput Methods Appl Mech Eng 374:113573

    Article  MathSciNet  MATH  Google Scholar 

  34. Hillman M, Chen JS (2018) Performance comparison of nodally integrated Galerkin meshfree methods and nodally collocated strong form meshfree methods. Adv Comput Plast Comput Methods Appl Sci 46:145–164

    MathSciNet  Google Scholar 

  35. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  37. Chen JS, Yoon S, Wu CT (2002) Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 53:2587–2615

    Article  MATH  Google Scholar 

  38. Wang D, Chen JS (2008) A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int J Numer Methods Eng 74:368–390

    Article  MATH  Google Scholar 

  39. Duan Q, Li X, Zhang H, Belytschko T (2012) Second-order accurate derivatives and integration schemes for meshfree methods. Int J Numer Methods Eng 92:399–424

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95:387–418

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang D, Wu J (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu CT, Chi SW, Koishi M, Wu Y (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Methods Eng 107:3–30

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu J, Wang D, Lin Z (2018) A meshfree higher order mass matrix formulation for structural vibration analysis. Int J Struct Stab Dyn 18:1850121

    Article  MathSciNet  Google Scholar 

  44. Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu J, Wang D (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631

    Article  MathSciNet  MATH  Google Scholar 

  46. Gomez H, De Lorenzis L (2016) The variational collocation method. Comput Methods Appl Mech Eng 309:152–181

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang D, Wang J, Wu J (2018) Superconvergent gradient smoothing meshfree collocation method. Comput Methods Appl Mech Eng 304:728–766

    Article  MathSciNet  MATH  Google Scholar 

  48. Qi D, Wang D, Deng L, Xu X, Wu CT (2019) Reproducing kernel mesh-free collocation analysis of structural vibrations. Eng Comput 36:734–764

    Article  Google Scholar 

  49. Wang D, Wang J, Wu J (2020) Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates. Comput Mech 65:877–903

    Article  MathSciNet  Google Scholar 

  50. Wang D, Qi D, Li X (2021) Superconvergent isogeometric collocation method with Greville points. Comput Methods Appl Mech Eng 377:1136

    MathSciNet  MATH  Google Scholar 

  51. Li S, Liu WK (1996) Moving least-square reproducing kernel method Part II: Fourier analysis. Comput Methods Appl Mech Eng 139:159–193

    Article  MATH  Google Scholar 

  52. Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21:28–47

    Article  MathSciNet  MATH  Google Scholar 

  53. Rao SS (2019) Vibration of continuous systems (2nd edition). Wiley, Hoboken

    Book  Google Scholar 

  54. Wang D, Pan F, Xu X, Li X (2019) Superconvergent isogeometric analysis of natural frequencies for elastic continua with quadratic splines. Comput Methods Appl Mech Eng 347:874–905

    Article  MathSciNet  MATH  Google Scholar 

  55. Dong SB (1977) A Block-Stodola eigensolution technique for large algebraic systems with non-symmetrical matrices. Int J Numer Methods Eng 11:247–267

    Article  MathSciNet  MATH  Google Scholar 

  56. Moleiro F, Mota Soares CM, Mota Soares CA, Reddy JN (2009) Mixed least-squares finite element models for static and free vibration analysis of laminated composite plates. Comput Methods Appl Mech Eng 198:1848–1856

    Article  MATH  Google Scholar 

  57. Tisseur F, Meerbergen K (2001) The quadratic eigenvalue problem. SIAM Rev 43:235–286

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang L, Chamoin L, Ladevèze P (2016) Computable upper and lower bounds on eigenfrequencies. Comput Methods Appl Mech Eng 302:27–43

    Article  MathSciNet  MATH  Google Scholar 

  59. Hou S, Li X, Wang D, Lin Z (2021) A mid-node mass lumping scheme for accurate structural vibration analysis with serendipity finite elements. Int J Appl Mech 13:2150013

    Article  Google Scholar 

Download references

Acknowledgements

The support of this work by the National Natural Science Foundation of China (12072302, 11772280) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equation Section (Next).

In this Appendix, the terms \({}^{{2N}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{xx}}\),\({}^{{2N}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{yy}}\),\({}^{{2N}}{\tilde{\mathcal{S}}}_{{(m,n)}}\), \({}^{{2N + 1}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{xx}}\) and \({}^{{2N + 1}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{yy}}\) in Eqs. (72)–(74) and (76)–(77) for the least squares recursive gradient meshfree collocation method, are detailed as follows:

$$ \begin{aligned} {}^{{2N}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{xx}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{2\delta _{{1m}} \delta _{{0n}} }}} } \right. \\ & \left. { + \;\sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 2}} }}} + \cdots } \right\} \\ \approx & \underbrace {{\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } }}_{{ = {\mathcal{A}}}}k^{2} \cos ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \approx & {\mathcal{A}}k^{2} \cos ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \end{aligned} $$
(92)
$$ \begin{aligned} {}^{{2N}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{yy}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 2\delta _{{0m}} \delta _{{1n}} }}} \right. \\ & \left. { + \;\sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 2}} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } k^{2} \sin ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \approx & {\mathcal{A}}k^{2} \sin ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \end{aligned} $$
(93)
$$ \begin{aligned} {}^{{2N}}{\tilde{\mathcal{S}}}_{{(m,n)}} = & \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{J}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } } } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{J}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = \delta _{{0m}} \delta _{{0n}} }}} \right. \\ & \left. { + \;\sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{J}^{{}} ({\user2{x}}_{C} )\underbrace {{\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 2}} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{(\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \approx & {\mathcal{A}} + {\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \end{aligned} $$
(94)
$$ \begin{aligned} {}^{{2N + 1}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{xx}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 2\delta _{{1m}} \delta _{{0n}} }}} \right. \\ & + \sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 0}} \\ & \left. { + \sum\limits_{{m = 0}}^{{N + 2}} {\frac{{(k\iota )^{{2N + 4}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 4 - 2m}} }}{{(2m)!(2N + 4 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(2N + 4 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 4}} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } k^{2} \cos ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 4 - 2m}} }}{{(2m)!(2N + 4 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \approx & {\mathcal{A}}k^{2} \cos ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \end{aligned} $$
(95)
$$ \begin{aligned} {}^{{2N + 1}}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{yy}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 2\delta _{{0m}} \delta _{{1n}} }}} \right. \\ & + \;\sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 0}} \\ & \left. { + \;\sum\limits_{{m = 0}}^{{N + 2}} {\frac{{(k\iota )^{{2N + 4}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 4 - 2m}} }}{{(2m)!(2N + 4 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(2N + 4 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 4}} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } k^{2} \sin ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 4 - 2m}} }}{{(2m)!(2N + 4 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \approx & {\mathcal{A}}k^{2} \sin ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \end{aligned} $$
(96)

Meanwhile, \({}^{1}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{xx}}\),\({}^{1}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{yy}}\) and \({}^{1}{\tilde{\mathcal{S}}}_{{(m,n)}}\) in Eqs. (79)–(81) are given by:

$$ \begin{aligned} {}^{1}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{xx}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{0} {\sum\limits_{{n = 0}}^{0} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 0}}} \right. \\ & + \;\sum\limits_{{m = 0}}^{1} {\frac{{(k\iota )^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2 - 2m}} }}{{(2m)!(2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = \delta _{{1m}} }} \\ & \left. { + \;\sum\limits_{{m = 0}}^{2} {\frac{{(k\iota )^{4} (\cos \theta )^{{2m}} (\sin \theta )^{{4 - 2m}} }}{{(2m)!(4 - 2m)!}}\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\tilde{\Psi }_{{J,xx}}^{{[2]}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(4 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{4} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } k^{2} \cos ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{4 - 2m}} }}{{(2m)!(4 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{2} ] \\ \approx & {\mathcal{A}}k^{2} \cos ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{2} ] \\ \end{aligned} $$
(97)
$$ \begin{aligned} {}^{1}{\tilde{\mathcal{G}}}_{{(m,n)}}^{{yy}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{0} {\sum\limits_{{n = 0}}^{0} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } } } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 0}}} \right. \\ & + \;\sum\limits_{{m = 0}}^{1} {\frac{{(k\iota )^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2 - 2m}} }}{{(2m)!(2 - 2m)!}}\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )\psi _{{(2m)(2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = \delta _{{0m}} }} \\ & \left. { + \;\sum\limits_{{m = 0}}^{2} {\frac{{(k\iota )^{4} (\cos \theta )^{{2m}} (\sin \theta )^{{4 - 2m}} }}{{(2m)!(4 - 2m)!}}\sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\tilde{\Psi }_{{J,yy}}^{{[2]}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(4 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{4} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } k^{2} \sin ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{4 - 2m}} }}{{(2m)!(4 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{2} ] \\ \approx & {\mathcal{A}}k^{2} \sin ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{2} ] \\ \end{aligned} $$
(98)
$$ \begin{aligned} {}^{1}{\tilde{\mathcal{S}}}_{{(m,n)}}^{{}} = & \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\beta _{C} \tilde{\Psi }_{J}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & \left\{ {\sum\limits_{{m = 0}}^{0} {\sum\limits_{{n = 0}}^{0} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{J}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = \delta _{{0m}} \delta _{{0n}} }}} \right. \\ & \left. { + \;\sum\limits_{{m = 0}}^{1} {\frac{{(k\iota )^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2 - 2m}} }}{{(2m)!(2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \sum\limits_{{J = 1}}^{{NP}} {\tilde{\Psi }_{J}^{{}} ({\user2{x}}_{C} )\underbrace {{\psi _{{(2m)(2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{2} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } + \sum\limits_{{C = 1}}^{{NC}} {\beta _{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2 - 2m}} }}{{(2m)!(2 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{2} ] \\ \approx & {\mathcal{A}} + k^{2} {\mathcal{O}}[(k\alpha h)^{2} ] \\ \end{aligned} $$
(99)

On the other hand, for the standard least squares meshfree collocation method, the terms \({}^{{2N + 1}}{\bar{\mathcal{G}}}_{{(m,n)}}^{{xx}}\),\({}^{{2N + 1}}{\bar{\mathcal{G}}}_{{(m,n)}}^{{yy}}\) and \({}^{{2N + 1}}{\bar{\mathcal{S}}}_{{(m,n)}}\) in Eqs. (84)–(86) read:

$$ \begin{aligned} {}^{{2N + 1}}{\bar{\mathcal{G}}}_{{(m,n)}}^{{xx}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\Psi _{J}^{{}} ({\user2{x}}_{C} )}}_{{ = \bar{\beta }_{C} }}\Psi _{{J,xx}}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\Psi _{{J,xx}}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 2\delta _{{1m}} \delta _{{0n}} }}} \right. \\ & \left. { + \;\sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\Psi _{{J,xx}}^{{}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 2}} }}} + \cdots } \right\} \\ \approx & \underbrace {{\sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } }}_{{ = {\bar{\mathcal{A}}}}}k^{2} \cos ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \approx & {\bar{\mathcal{A}}}k^{2} \cos ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \end{aligned} $$
(100)
$$ \begin{aligned} {}^{{2N + 1}}{\bar{\mathcal{G}}}_{{(m,n)}}^{{yy}} = & - \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\bar{\beta }_{C} \Psi _{{J,yy}}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & - \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\Psi _{{J,yy}}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = 2\delta _{{0m}} \delta _{{1n}} }}} \right. \\ & \left. { + \;\sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \sum\limits_{{J = 1}}^{{NP}} {\underbrace {{\Psi _{{J,yy}}^{{}} ({\user2{x}}_{C} )}}_{{\sim 1/(\alpha h)^{2} }}\underbrace {{\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 2}} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } k^{2} \sin ^{2} \theta + \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \frac{{k^{2} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 4 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \approx & {\bar{\mathcal{A}}}k^{2} \sin ^{2} \theta + k^{2} {\mathcal{O}}[(k\alpha h)^{{2N}} ] \\ \end{aligned} $$
(101)
$$ \begin{aligned} {}^{{2N + 1}}{\bar{\mathcal{S}}}_{{(m,n)}} = & \sum\limits_{{m = 0}}^{\infty } {\sum\limits_{{n = 0}}^{\infty } {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\sum\limits_{{J = 1}}^{{NP}} {\bar{\beta }_{C} \Psi _{J}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} } \\ = & \left\{ {\sum\limits_{{m = 0}}^{N} {\sum\limits_{{n = 0}}^{{N - m}} {\frac{{(\iota k)^{{2m + 2n}} (\cos \theta )^{{2m}} (\sin \theta )^{{2n}} }}{{(2m)!(2n)!}}} } \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \underbrace {{\sum\limits_{{J = 1}}^{{NP}} {\Psi _{J}^{{}} ({\user2{x}}_{C} )\psi _{{(2m)(2n)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )} }}_{{ = \delta _{{0m}} \delta _{{0n}} }}} \right. \\ & \left. { + \;\sum\limits_{{m = 0}}^{{N + 1}} {\frac{{(k\iota )^{{2N + 2}} (\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}} \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \sum\limits_{{J = 1}}^{{NP}} {\Psi _{J}^{{}} ({\user2{x}}_{C} )\underbrace {{\psi _{{(2m)(2N + 2 - 2m)}} ({\user2{x}}_{J} - {\user2{x}}_{C} )}}_{{\sim (\alpha h)^{{2N + 2}} }}} + \cdots } \right\} \\ \approx & \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } + \sum\limits_{{C = 1}}^{{NC}} {\bar{\beta }_{C} } \frac{{(\cos \theta )^{{2m}} (\sin \theta )^{{2N + 2 - 2m}} }}{{(2m)!(2N + 2 - 2m)!}}{\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \approx & {\bar{\mathcal{A}}} + {\mathcal{O}}[(k\alpha h)^{{2N + 2}} ] \\ \end{aligned} $$
(102)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Wang, D. & Qi, D. A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis. Comput Mech 68, 1063–1096 (2021). https://doi.org/10.1007/s00466-021-02059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02059-5

Keywords

Navigation