Skip to main content
Log in

Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The finite cell method (FCM) is a fictitious domain approach that greatly simplifies simulations involving complex structures. Recently, the FCM has been applied to contact problems. The current study continues in this field by extending the concept of weakly enforced boundary conditions to inequality constraints for frictionless contact. Furthermore, it formalizes an approach that automatically recovers high-order contact surfaces of (implicitly defined) embedded geometries by means of an extended Marching Cubes algorithm. To further improve the accuracy of the discretization, irregularities at the boundary of contact zones are treated with multi-level \(hp\)-refinements. Numerical results and a systematic study of h-, p- and hp-refinements show that the FCM can efficiently provide accurate results for problems involving contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. We consider healing and simplification of geometries to be part of mesh generation as well.

  2. \(m_{\text {lim}}\) should not be chosen smaller than 1, since elements that contain a singularity might be skipped for refinement.

References

  1. Abramowitz M, Stegun IA (2013) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover books on mathematics (ninth Dover printing edition). Dover, Dover

  2. Andreykiv A, van Keulen F, Rixen DJ, Valstar E (2012) A level-set-based large sliding contact algorithm for easy analysis of implant positioning. Int J Numer Methods Eng 89(10):1317–1336

    Article  MathSciNet  MATH  Google Scholar 

  3. Belytschko T (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  4. Bog T, Zander N, Kollmannsberger S, Rank E (2015) Normal contact with high order finite elements and a fictitious contact material. Comput Math Appl 70(7):1370–1390

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  6. Bourke P (1994) Polygonising a scalar field (Marching Cubes). http://paulbourke.net/geometry/polygonise/

  7. Burman E (2012) A Penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J Numer Anal 50(4):1959–1981

    Article  MathSciNet  MATH  Google Scholar 

  8. Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput Methods Appl Mech Eng 199(41–44):2680–2686

    Article  MathSciNet  MATH  Google Scholar 

  9. Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341

    Article  MathSciNet  MATH  Google Scholar 

  10. Chouly F, Hild P, Renard Y (2014) Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math Comput 84(293):1089–1112

    Article  MathSciNet  MATH  Google Scholar 

  11. Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng 284:781–806

    Article  MathSciNet  Google Scholar 

  12. Cottrell J, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  MATH  Google Scholar 

  13. De Lorenzis L, Wriggers P, Hughes TJ (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123

    Article  MathSciNet  MATH  Google Scholar 

  14. Dias A, Serpa A, Bittencourt M (2015) High-order mortar-based element applied to nonlinear analysis of structural contact mechanics. Comput Methods Appl Mech Eng 294:19–55

    Article  MathSciNet  Google Scholar 

  15. Duong TX, Sauer RA (2015) An accurate quadrature technique for the contact boundary in 3D finite element computations. Comput Mech 55(1):145–166

    Article  MathSciNet  MATH  Google Scholar 

  16. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45–48):3768–3782

    Article  MathSciNet  MATH  Google Scholar 

  17. Düster A, Bröker H, Rank E (2001) The p-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52(7):673–703

    Article  MATH  Google Scholar 

  18. Düster A, Rank E, Szabó BA (2017) The p-version of the finite element method and finite cell methods. In: Stein E, Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 2. Wiley, Chichester, pp 1–35

    Google Scholar 

  19. Farin G (1986) Triangular Bernstein–Bézier patches. Comput Aided Geom Des 3(2):83–127

    Article  MathSciNet  Google Scholar 

  20. Franke D (2011) Investigation of mechanical contact problems with high-order finite element methods. Ph.D. thesis, Technische Universität München

  21. Franke DC, Düster A, Nübel V, Rank E (2010) A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Comput Mech 45(5):513–522

    Article  MATH  Google Scholar 

  22. Franke DC, Düster A, Rank E (2008) The p-version of the FEM for computational contact mechanics. PAMM 8(1):10271–10272

    Article  Google Scholar 

  23. Fries T-P, Omerović S (2015) Higher-order accurate integration of implicit geometries. Int J Numer Methods Eng 106(5):323–371

    Article  MathSciNet  MATH  Google Scholar 

  24. Gordon WJ, Hall CA (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer Math 21(2):109–129

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo Y, Ruess M, Schillinger D (2017) A parameter-free variational coupling approach for trimmed isogeometric thin shells. Comput Mech 59(4):693–715

    Article  MathSciNet  MATH  Google Scholar 

  26. Hertz H (1882) Ueber die Berührung fester elastischer Körper. J für die reine und angewandte Math 92:156–171

    MathSciNet  MATH  Google Scholar 

  27. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    MATH  Google Scholar 

  28. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  29. Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54(3):661–675

    Article  MathSciNet  MATH  Google Scholar 

  30. Joulaian M, Hubrich S, Düster A (2016) Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput Mech 57(6):979–999. doi:10.1007/s00466-016-1273-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of hermite data. ACM Press, New York, pp 339–346. doi:10.1145/566654.566586

  32. Konyukhov A, Izi R (2015) Introduction to computational contact mechanics: a geometrical approach. Wiley series in computational mechanics. Wiley, Chichester

    MATH  Google Scholar 

  33. Konyukhov A, Lorenz C, Schweizerhof K (2015) Various contact approaches for the finite cell method. Comput Mech 56(2):331–351. doi:10.1007/s00466-015-1174-x

  34. Konyukhov A, Schweizerhof K (2007) Closest point projection in contact mechanics: existence and uniqueness for different types of surfaces. PAMM 7(1):4040053–4040054

    Article  Google Scholar 

  35. Konyukhov A, Schweizerhof K (2009) Incorporation of contact for high-order finite elements in covariant form. Comput Methods Appl Mech Eng 198(13–14):1213–1223

    Article  MathSciNet  MATH  Google Scholar 

  36. Kruse R, Nguyen-Thanh N, De Lorenzis L, Hughes T (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng 296:73–112

    Article  MathSciNet  Google Scholar 

  37. Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary methods. Adv Model Simul Eng Sci 2(1):1–22

    Article  Google Scholar 

  38. Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: accurately integrating discontinuous functions in 3D. Comput Methods Appl Mech Eng 306:406–426

    Article  MathSciNet  Google Scholar 

  39. Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    MATH  Google Scholar 

  40. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques, pp 163–169. ACM Press, New York

  41. Lu J, Zheng C (2014) Dynamic cloth simulation by isogeometric analysis. Comput Methods Appl Mech Eng 268:475–493

    Article  MathSciNet  MATH  Google Scholar 

  42. Maple C (2003) Geometric design and space planning using the marching squares and marching cube algorithms. In: 2003 International conference on geometric modeling and graphics, 2003, Proceedings, IEEE, pp 90–95

  43. Matzen ME, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS based finite elements. Comput Methods Appl Mech Eng 255:27–39

    Article  MathSciNet  MATH  Google Scholar 

  44. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1):9–15

  45. Osher S, Fedkiw RP (2003) Level set methods and dynamic implicit surfaces. Number 153 in applied mathematical sciences. Springer, New York

    Book  MATH  Google Scholar 

  46. Páczelt I, Szabó B, Szabó T (1999) Solution of contact problem using the hp-version of the finite element method. Comput Math Appl 38(9–10):49–69

    Article  MathSciNet  MATH  Google Scholar 

  47. Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133

    Article  MathSciNet  MATH  Google Scholar 

  48. Popp A, Gee MW, Wall WA (2013) Mortar methods for single- and multi-field applications in computational mechanics. In: Resch MM, Wang X, Bez W, Focht E, Kobayashi H (eds) Sustained simulation performance 2012. Springer, Berlin, pp 133–154

    Chapter  Google Scholar 

  49. Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80

    Article  MathSciNet  MATH  Google Scholar 

  50. Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249–252:104–115

  51. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846

    Article  MathSciNet  MATH  Google Scholar 

  52. Ruess M, Schillinger D, Özcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71

  53. Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11(3–4):425–37

    Article  Google Scholar 

  54. Schaefer S, Warren J (2002) Dual contouring: the secret sauce. https://people.eecs.berkeley.edu/~jrs/meshpapers/SchaeferWarren2.pdf

  55. Schaefer S, Warren J (2005) Dual marching cubes: primal contouring of dual grids. In: Computer graphics forum, vol 24. Wiley online Library, pp 195–201

  56. Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89(9):1171–1202

    Article  MathSciNet  MATH  Google Scholar 

  57. Schillinger D, Dedè L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJ (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–252:116–150

    Article  MathSciNet  MATH  Google Scholar 

  58. Schillinger D, Harari I, Hsu M-C, Kamensky D, Stoter SKF, Yu Y, Zhao Y (2016) The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput Methods Appl Mech Eng 309:625–652

    Article  MathSciNet  Google Scholar 

  59. Schillinger D, Rank E (2011) An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput Methods Appl Mech Eng 200(47–48):3358–3380

    Article  MathSciNet  MATH  Google Scholar 

  60. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50(4):445–478

    Article  MathSciNet  MATH  Google Scholar 

  61. Sethian JA (1996) Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Number 3 in Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  62. Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E (ed) Encyclopedia of computational mechanics. Wiley, Chichester

    Google Scholar 

  63. Temizer İ, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186

    Article  MathSciNet  Google Scholar 

  64. Temizer İ, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

  65. Tur M, Albelda J, Navarro-Jimenez JM, Rodenas JJ (2015) A modified perturbed Lagrangian formulation for contact problems. Comput Mech 55(4):737–754

    Article  MathSciNet  MATH  Google Scholar 

  66. Verhoosel C, van Zwieten G, van Rietbergen B, de Borst R (2015) Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput Methods Appl Mech Eng 284:138–164

    Article  MathSciNet  Google Scholar 

  67. Vinci C (2009) Application of Dirichlet boundary conditions in the finite cell method. Master’s thesis, Lehrstuhl für Computation in Engineering, Technische Universität München

  68. Wassermann B, Kollmannsberger S, Bog T, Rank E (2017) From geometric design to numerical simulation: a direct approach using the finite cell method on constructive solid geometry. Comput Math Appl

  69. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

  70. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

  71. Wriggers P, Schröder J, Schwarz A (2013) A finite element method for contact using a third medium. Comput Mech 52(4):837–847

    Article  MathSciNet  MATH  Google Scholar 

  72. Yang Z, Kollmannsberger S, Düster A, Ruess M, Garcia EG, Burgkart R, Rank E (2012) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14(5):207–216

  73. Yastrebov VA (2013) Numerical methods in contact mechanics. Numerical methods in engineering series. ISTE, Hoboken

    Book  MATH  Google Scholar 

  74. Zander N, Bog T, Elhaddad M, Espinoza R, Hu H, Joly A, Wu C, Zerbe P, Düster A, Kollmannsberger S, Parvizian J, Ruess M, Schillinger D, Rank E (2014) FCMLab: a finite cell research toolbox for MATLAB. Adv Eng Softw 74:49–63

    Article  Google Scholar 

  75. Zander N (2017) Multi-level Hp-FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes. Ph.D. thesis, Technische Universität München, München

  76. Zander N, Bog T, Elhaddad M, Frischmann F, Kollmannsberger S, Rank E (2016) The multi-level hp-method for three-dimensional problems: dynamically changing high-order mesh refinement with arbitrary hanging nodes. Comput Methods Appl Mech Eng 310:252–277

    Article  MathSciNet  Google Scholar 

  77. Zander N, Bog T, Kollmannsberger S, Schillinger D, Rank E (2015) Multi-level hp-adaptivity: High-order mesh adaptivity without the difficulties of constraining hanging nodes. Comput Mech 55(3):499–517

    Article  MathSciNet  MATH  Google Scholar 

  78. Zander N, Ruess M, Bog T, Kollmannsberger S, Rank E (2017) Multi-level hp-adaptivity for cohesive fracture modeling. Int J Numer Methods Eng 109(13):1723–1755

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first and the last author gratefully acknowledge the financial support of the German Research Foundation under grants RA 624/15-2 and RA 624/22-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Bog.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bog, T., Zander, N., Kollmannsberger, S. et al. Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method. Comput Mech 61, 385–407 (2018). https://doi.org/10.1007/s00466-017-1464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1464-6

Keywords

Navigation