Skip to main content

Advertisement

Log in

Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv)

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, fed-batch cultures of a Pichia pastoris strain constitutively expressing a single chain antibody fragment (scFv) under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter were performed in a pilot 50 L bioreactor. Due to the very high cell density achieved within the first 75 h, typically between 140 and 160 g-DCW/L of dry cell weight (DCW), most of the scFv is produced under hard oxygen transfer limitation. To improve scFv productivity, a direct adaptive dissolved oxygen (DO)-stat feeding controller that maximizes glycerol feeding under the constraint of available oxygen transfer capacity was developed and applied to this process. The developed adaptive controller enabled to maximize glycerol feeding through the regulation of DO concentration between 3 and 5 % of saturation, thereby improving process productivity. Set-point convergence dynamics are characterized by a fast response upon large perturbations to DO, followed by a slower but very robust convergence in the vicinity of the boundary with almost imperceptible overshoot. Such control performance enabled operating closer to the 0 % boundary for longer periods of time when compared to a traditional proportional–integral–derivative algorithm, which tends to destabilize with increasing cell density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DO:

Dissolved oxygen

PID:

Proportional–integral–derivative

Y PX :

Yield of product on biomass (w/w)

PI:

Proportional–integral

WCW:

Wet cell weight

DCW:

Dry cell weight

GB:

Glycerol batch (phase)

GFB:

Glycerol fed-batch (phase)

OTL:

Oxygen transfer limitation (phase)

F :

Glycerol feeding rate (L/h)

F 0 :

Initial glycerol feeding rate (L/h)

t :

Time (h)

C 0 :

Dissolved oxygen concentration (g/L)

\( C_{0}^{*} \) :

Oxygen saturation concentration (g/L)

S 0 :

Glycerol concentration in the feed solution (g/L)

Y OS :

Observed yield of oxygen on glycerol (w/w)

k L a :

Oxygen mass transfer coefficient (h−1)

x :

100 − DOT (%)

K :

Time-varying ‘parameter’

q O :

Oxygen flux [g/(L h)]

q S,an :

Glycerol flux for anabolism [g/(L h)]

q S,en :

Glycerol flux for catabolism [g/(L h)]

Y OS,an :

Yield of oxygen on glycerol for anabolism (w/w)

Y OS,en :

Yield of oxygen on glycerol for catabolism (w/w)

P :

Product titer (g/L)

V :

Liquid volume in the bioreactor (L)

X :

Biomass concentration (g/L)

e :

Deviation to set-point

DOT:

Dissolved oxygen tension (% saturation)

a p, k p :

Adaptive controller parameter

\( \dot{y} \) :

Variable derivative

\( \hat{y} \) :

Variable estimates

y * :

Variable set-point

τ c :

Controller time constant (s)

γ :

Adaptation gain

μ :

Desired specific growth rate (h−1)

θ :

Time-varying ‘parameter’

β :

Specific protein synthesis rate [AU/(g-WCW h)]

φ :

θ estimation error

ψ :

K estimation error

References

  1. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270. doi:10.1002/yea.1208

    Article  CAS  Google Scholar 

  2. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66. doi:10.1111/j.1574-6976.2000.tb00532.x

    Article  CAS  Google Scholar 

  3. Menendez J, Valdes I, Cabrera N (2003) The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast 20(13):1097–1108. doi:10.1002/yea.1028

    Article  CAS  Google Scholar 

  4. Delroisse JM, Dannau M, Gilsoul JJ, El Mejdoub T, Destain J, Portetelle D, Thonart P, Haubruge E, Vandenbol M (2005) Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris. Protein Expr Purif 42(2):286–294. doi:10.1016/j.pep.2005.04.011

    Article  CAS  Google Scholar 

  5. Goodrick JC, Xu M, Finnegan R, Schilling BM, Schiavi S, Hoppe H, Wan NC (2001) High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system. Biotechnol Bioeng 74(6):492–497. doi:10.1002/bit.1140

    Article  CAS  Google Scholar 

  6. Vassileva A, Chugh DA, Swaminathan S, Khanna N (2001) Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. J Biotechnol 88(1):21–35. doi:10.1016/s0168-1656(01)00254-1

    Article  CAS  Google Scholar 

  7. Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17. doi:10.1186/1475-2859-5-17

  8. Zhang W, Sinha J, Smith LA, Inan M, Meagher MM (2005) Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation. Biotechnol Prog 21(2):386–393. doi:10.1021/bp049811n

    Article  CAS  Google Scholar 

  9. Zhang WH, Bevins MA, Plantz BA, Smith LA, Meagher MM (2000) Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol Bioeng 70(1):1–8. doi:10.1002/1097-0290(20001005)70:1<1::aid-bit1>3.0.co;2-y

    Article  CAS  Google Scholar 

  10. Sinha J, Plantz BA, Zhang WH, Gouthro M, Schlegel V, Liu CP, Meagher MM (2003) Improved production of recombinant ovine interferon-tau by Mut(+) strain of Pichia pastoris using an optimized methanol feed profile. Biotechnol Prog 19(3):794–802. doi:10.1021/bp025744q

    Article  CAS  Google Scholar 

  11. Potgieter TI, Kersey SD, Mallem MR, Nylen AC, d’Anjou M (2010) Antibody expression kinetics in glycoengineered Pichia Pastoris. Biotechnol Bioeng 106(6):918–927. doi:10.1002/bit.22756

    Article  CAS  Google Scholar 

  12. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K (2000) High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J Biosci Bioeng 90(3):280–288. doi:10.1263/jbb.90.280

    CAS  Google Scholar 

  13. Hohenblum H, Borth N, Mattanovich D (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J Biotechnol 102(3):281–290. doi:10.1016/s0168-1656(03)00049-x

    Article  CAS  Google Scholar 

  14. Cunha AE, Clemente JJ, Gomes R, Pinto F, Thomaz M, Miranda S, Pinto R, Moosmayer D, Donner P, Carrondo MJT (2004) Methanol induction optimization for scFv antibody fragment production in Pichia pastoris. Biotechnol Bioeng 86(4):458–467. doi:10.1002/bit.20051

    Article  CAS  Google Scholar 

  15. Pais JM, Varas L, Valdes J, Cabello C, Rodriguez L, Mansur M (2003) Modeling of mini-proinsulin production in Pichia pastoris using the AOX promoter. Biotechnol Lett 25(3):251–255. doi:10.1023/a:1022398917213

    Article  CAS  Google Scholar 

  16. Ohya T, Ohyama M, Kobayashi K (2005) Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Biotechnol Bioeng 90(7):876–887. doi:10.1002/bit.20507

    Article  CAS  Google Scholar 

  17. Plantz BA, Sinha J, Villarete L, Nickerson KW, Schlegel VL (2006) Pichia pastoris fermentation optimization: energy state and testing a growth-associated model. Appl Microbiol Biotechnol 72(2):297–305. doi:10.1007/s00253-005-0271-8

    Article  CAS  Google Scholar 

  18. Jungo C, Rerat C, Marison IW, von Stockar U (2006) Quantitative characterization of the regulation of the synthesis of alcohol oxidase and of the expression of recombinant avidin in a Pichia pastoris Mut(+) strain. Enzyme Microb Technol 39(4):936–944. doi:10.1016/j.enzmictec.2006.01.027

    Article  CAS  Google Scholar 

  19. Pal Y, Khushoo A, Mukherjee KJ (2006) Process optimization of constitutive human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression in Pichia pastoris fed-batch culture. Appl Microbiol Biotechnol 69(6):650–657. doi:10.1007/s00253-005-0018-6

    Article  CAS  Google Scholar 

  20. Khasa YP, Khushoo A, Srivastava L, Mukherjee KJ (2007) Kinetic studies of constitutive human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression in continuous culture of Pichia pastoris. Biotechnol Lett 29(12):1903–1908. doi:10.1007/s10529-007-9473-8

    Article  CAS  Google Scholar 

  21. Berdichevsky M, d’Anjou M, Mallem MR, Shaikh SS, Potgieter TI (2011) Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol 155(2):217–224. doi:10.1016/j.jbiotec.2011.06.021

    Article  CAS  Google Scholar 

  22. Lee CY, Lee SJ, Jung KH, Katoh S, Lee EK (2003) High dissolved oxygen tension enhances heterologous protein expression by recombinant Pichia pastoris. Process Biochem 38(8):1147–1154. doi:10.1016/s0032-9592(02)00280-7

    Article  CAS  Google Scholar 

  23. Trentmann O, Khatri NK, Hoffmann F (2004) Reduced oxygen supply increases process stability and product yield with recombinant Pichia pastoris. Biotechnol Prog 20(6):1766–1775. doi:10.1021/bp049711h

    Article  CAS  Google Scholar 

  24. Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D (2008) Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100(1):177–183. doi:10.1002/bit.21763

    Article  CAS  Google Scholar 

  25. Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO (2005) Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes. Bioprocess Biosyst Eng 27(6):399–406. doi:10.1007/s00449-005-0005-4

    Article  CAS  Google Scholar 

  26. Oliveira R, Clemente JJ, Cunha AE, Carrondo MJT (2005) Adaptive dissolved oxygen control through the glycerol feeding in a recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation. J Biotechnol 116(1):35–50. doi:10.1016/j.jbiotec.2004.09.016

    Article  CAS  Google Scholar 

  27. Lim HK, Choi SJ, Kim KY, Jung KH (2003) Dissolved-oxygen-stat controlling two variables for methanol induction of rGuamerin in Pichia pastoris and its application to repeated fed-batch. Appl Microbiol Biotechnol 62(4):342–348. doi:10.1007/s00253-003-1307-6

    Article  CAS  Google Scholar 

  28. Chung JD (2000) Design of metabolic feed controllers: application to high-density fermentations of Pichia pastoris. Biotechnol Bioeng 68(3):298–307. doi:10.1002/(sici)1097-0290(20000505)68:3<298:aid-bit8>3.0.co;2-k

    Article  CAS  Google Scholar 

  29. Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Prentice-Hall, New Jersey

    Google Scholar 

  30. Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors SO (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess Biosyst Eng 24(6):385–393. doi:10.1007/s00449-001-0274-5

    Article  CAS  Google Scholar 

  31. Jahic M, Gustavsson M, Jansen AK, Martinelle M, Enfors SO (2003) Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. J Biotechnol 102(1):45–53. doi:10.1016/s0168-1656(03)00003-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Fundação para a Ciência e Tecnologia through PhD Grant SFRH/BD/36285/2007 (Ana R Ferreira), PhD Grant SFRH/BD/43956/2008 (Filipe Ataide), PhD Grant SFRH/BD/36990/2007 (Moritz von Stosch), Post-doc Grant SFRH/BPD/46277/2008 (João Dias) and Project PTDC/EBB-EBI/103761/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, A.R., Ataíde, F., von Stosch, M. et al. Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv). Bioprocess Biosyst Eng 35, 1603–1614 (2012). https://doi.org/10.1007/s00449-012-0751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0751-z

Keywords

Navigation