Skip to main content
Log in

Monotone Control of R Systems

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

R system is a mathematical model for analyzing bio-chemical reactions. This paper proposes a framework on the control of R systems. In particular, we develop a theory of monotone control of R systems, inspired from the experimental requirement in the design of molecular computing systems. We show that any computation executed by a pair of an R system and its control system can be simulated by monotone control with only two control symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Azimi, S., Gratie, C., Ivanov, S., Manzoni, S., Petre, I., Porreca, A.E.: Complexity of model checking for reaction systems. Theor. Comput. Sci. 623, 102–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azimi, S., Gratie, C., Ivanov, S., Petre, I.: Dependency graphs and mass conservation in reaction systems. Theor. Comput. Sci. 598, 23–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azimi, S., Iancu, B., Petre, I.: Reaction systems models for the heat shock response. Fundamenta Informaticae 131, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azimi, S., Panchal, C., Czeizler, E., Petre, I.: Reaction systems models for the self-assembly of intermediate filaments. Ann. Univ. Bucharest LXI I(2), 9–24 (2015)

    Google Scholar 

  6. Azimi, S., Panchal, C., Czeizler, E., Petre, I.: Multi-stability, limit cycles, and period-doubling bifurcation with reaction systems. Int. J. Found. Comput. Sci. 28, 1007–1020 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  8. Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems. Int. J. Found. Comput. Sci. 31, 53–71 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Corolli, L., Maj, C., Marini, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theor Comput Sci 454, 95–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Reachability in resource-bounded reaction systems. In: Dediu, A.H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) Language and automata theory and applications. LATA 2016. Lecture Notes in Computer Science, vol 9618, pp. 592–602. Springer, Cham (2016)

    MATH  Google Scholar 

  11. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Complexity of dynamics of reaction systems. Inf. Comput. 267, 96–109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Evolving reaction systems. Theor. Comput. Sci. 682, 79–99 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrenfeucht, A., Petre, I., Rozenberg, G.: Reaction systems: a model of computation inspired by the functioning of the living cell. In: Konstantinidis, S., Moreira, N., Reis, R., Shallit, J. (eds.) The Role of Theory in Computer Science: Essays Dedicated to Janusz Brzozowski, pp. 1–32. World Scientific, Singapore (2017)

    Google Scholar 

  14. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75, 263–280 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Ehrenfeucht, A., Rozenberg, G.: Standard and ordered zoom structures. Theor. Comput. Sci. 608, 4–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Formenti, A., Manzoni, L., Porreca, A.E.: Cycles and global attractors of reaction systems. In: Jurgensen, H., Karhumaki, J., Okhotin, A. (eds.) Descriptional Complexity of Formal Systems. Lecture Notes in Computer Science, vol. 8614, pp. 114–125. Springer, Cham (2014)

    Chapter  MATH  Google Scholar 

  17. Fujimoto, K., Toyosato, K., Nakamura, S., Sakamoto, T.: RNA Fluorescence in situ hybridization using 3-cyanovinylcarbazole modified oligodeoxynucleotides as photo-cross-linkable probes. Bioorg. Med. Chem. Lett. 26, 5312–5314 (2016)

    Article  Google Scholar 

  18. Fujimoto, K., Sasago, S., Mihara, J., Nakamura, S.: DNA photo-cross-linking using pyranocarbazole and visible light. Org. Lett. 20, 2802–2805 (2018)

    Article  Google Scholar 

  19. Hagiya, M., Wang, S., Kawamata, I., Murata, S., Isokawa, T., Peper, F., Imai, K.: On DNA-based gellular automata, unconventional computation and natural computation. In: 13th International Conference, UCNC 2014. Lecture Notes in Computer Science, vol. 8553, pp. 177–189 (2014)

  20. Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bull. Math. Biol. 49, 737–759 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ivanov, S., Petre, I.: Controllability of reaction systems. J. Membr. Comput. 2, 290–302 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kimoto, N., Komiya, K., Fujimoto, K., Kobayashi, S.: Monotonically controlling right linear grammars with unknown behaviors to output a target string. Theor. Comput. Sci. 777, 387–408 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kimoto, N., Nakamura, S., Komiya, K., Fujimoto, K., Kobayashi, S.: Reducing control alphabet size for the control of right linear grammars with unknown behaviors. Theor. Comput. Sci. 862, 193–213 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kobayashi, H., Choyke, P.L.: Near-infrared photoimmunotherapy of cancer. Acc. Chem. Res. 52, 2332–2339 (2019)

    Article  Google Scholar 

  25. Kolch, W., Halasz, M., Granovskaya, M., Kholodenko, B.N.: The dynamic control of signal transduction networks in cancer cells. Nat. Rev. Cancer 15, 515–527 (2015)

    Article  Google Scholar 

  26. Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473, 167–173 (2011)

    Article  Google Scholar 

  27. Komiya, K., Yamamura, M., Rose, J.A.: Quantitative design and experimental validation for a single-molecule DNA nanodevice transformable among three structural states. Nucl. Acids Res. 38, 4539–4546 (2010)

    Article  Google Scholar 

  28. Lal, S., Clare, S.E., Halas, N.J.: Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008)

    Article  Google Scholar 

  29. Liu, N., Dai, M., Saka, S.K., Yin, P.: Super-resolution labeling with action-PAINT. Nat. Chem. 11, 1001–1008 (2019)

    Article  Google Scholar 

  30. Mȩski, A., Koutrfy, M., Penczek, W.: Verification of linear-time temporal properties for reaction systems with discrete concentrations. Fundamenta Informaticae 154, 289–306 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mȩski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of reaction systems. Inf. Sci. 313, 22–42 (2015)

    Article  MATH  Google Scholar 

  32. Nakamura, S., Hashimoto, H., Kobayashi, S., Fujimoto, K.: Photochemical acceleration of DNA strand displacement using ultrafast DNA photo-cross-linking. ChemBioChem 18(20), 1984–1989 (2017)

    Article  Google Scholar 

  33. Narberhaus, F., Waldminghaus, T., Chowdhury, S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006)

    Article  Google Scholar 

  34. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  36. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)

    Article  Google Scholar 

  37. Rogers, W.B., Manoharan, V.N.: Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015)

    Article  Google Scholar 

  38. Rose, J., Komiya, K., Kobayashi, S.: Engineering multistate DNA molecules: a tunable thermal band-pass filter. Micro Nano Lett. 11(10), 595–601 (2016)

    Article  Google Scholar 

  39. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000)

    Article  Google Scholar 

  40. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M.: State transitions by molecules. BioSystems 52(1–3), 81–91 (1999)

    Article  Google Scholar 

  41. Salomaa, A.: Functions and sequences generated by reaction systems. Theor. Comput. Sci. 466, 87–96 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Salomaa, A.: Minimal and almost minimal reaction systems. Nat. Comput. 12, 369–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Salomaa, A.: Tow-step simulations of reaction systems by minimal ones. Acta Cybernetica 22, 247–257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. PNAS 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  45. Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21, 1069–1074 (2003)

    Article  Google Scholar 

  46. Teh, W.C., Atanasiu, A.: Simulations of reaction systems by strictly minimal ones. J. Membr. Comput. 2, 162–170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. DNA Based Comput. II, 191–213 (1998)

    Article  MATH  Google Scholar 

  48. Yin, P., Choi, H., Calvert, C., Pierce, N.: Programming biomolecular self-assembly pathways. Nature 451(17), 318–323 (2008)

    Article  Google Scholar 

  49. Yoshimura, Y., Fujimoto, K.: Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10(15), 3227–3230 (2008)

    Article  Google Scholar 

  50. Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, P., Winfree, E.: Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B) (no. 19H04204) and (C) (no. 19K12216) of Japan Society of Promotion of Science. This work was also supported by Grant-in-Aid for Transformative Research Areas (A) 20H05971 of Japan Society of Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kobayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yako, R., Ise, D., Komiya, K. et al. Monotone Control of R Systems. New Gener. Comput. 40, 623–657 (2022). https://doi.org/10.1007/s00354-022-00166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-022-00166-2

Keywords

Navigation