Skip to main content
Log in

Ranging with frequency-shifted feedback lasers: from \(\upmu\)m-range accuracy to MHz-range measurement rate

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report results on ranging based on frequency-shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 \(\upmu \hbox {m}\), achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 \(\upmu \hbox {m}\) @ 1 kHz and a limit of the accuracy of \(\ge\)10 \(\upmu \hbox {m}\). In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system, a key feature is the injection of a single-frequency laser, phase modulated at variable frequency \(\varOmega\), into the FSF-laser cavity. The frequency \(\varOmega _\mathrm{{max}}\) at which the detector signal is maximal yields the distance. The semiconductor FSF-laser system operates without external injection seeding. In this case, the key feature is frequency counting that allows convenient choice of either accuracy or speed of measurements simply by changing the duration of the interval during which the frequency is measured by counting .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L.P. Yatsenko, B.W. Shore, K. Bergmann, Ranging and interferometry with a frequency shifted feedback laser. Opt. Commun. 242, 581–598 (2004)

    Article  ADS  Google Scholar 

  2. L.P. Yatsenko, B.W. Shore, K. Bergmann, An intuitive picture of optical ranging using frequency shifted feedback lasers seeded by a phase modulated field. Opt. Commun. 282, 2212–2216 (2009)

    Article  ADS  Google Scholar 

  3. V.V. Ogurtsov, L.P. Yatsenko, V.M. Khodakovskyy, B.W. Shore, G. Bonnet, K. Bergmann, High accuracy ranging with \(\text{ Yb }^{3+}\)-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed. Opt. Commun. 266, 266–273 (2006)

    Article  ADS  Google Scholar 

  4. V.V. Ogurtsov, V.M. Khodakovsky, L.P. Yatsenko, G. Bonnet, B.W. Shore, K. Bergmann, An all-fiber frequency-shifted feedback laser for optical ranging; signal variation with distance. Opt. Commun. 281, 1679–1685 (2008)

    Article  ADS  Google Scholar 

  5. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006)

    Article  ADS  Google Scholar 

  6. W. Streifer, J.R. Whinnery, Analysis of a dye laser using the acousto-optic filter. Appl. Phys. Lett. 17, 335–337 (1970)

    Article  ADS  Google Scholar 

  7. D.J. Taylor, S.E. Harris, S.T.K. Nieh, T.W. Hänsch, Electronic tuning of a dye laser using the acousto-optic filter. Appl. Phys. Lett. 19, 269–271 (1971)

    Article  ADS  Google Scholar 

  8. F.V. Kowalski, J.A. Squier, J.T. Pinckney, Pulse generation with an acousto-optic frequency shifter in a passive cavity. Appl. Phys. Lett. 50, 711–713 (1987)

    Article  ADS  Google Scholar 

  9. F.V. Kowalski, S.J. Shattil, P.D. Hale, Optical pulse generation with a frequency shifted feedback laser. Appl. Phys. Lett. 53, 734–736 (1988)

    Article  ADS  Google Scholar 

  10. G. Bonnet, S. Balle, T. Kraft, K. Bergmann, Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback. Opt. Commun. 123, 790–800 (1996)

    Article  ADS  Google Scholar 

  11. F.V. Kowalski, P.D. Hale, S.J. Shattil, Broadband continuous-wave laser. Opt. Lett. 13, 622–624 (1988)

    Article  ADS  Google Scholar 

  12. P.D. Hale, F.V. Kowalski, Output characterization of a frequency shifted feedback laser: theory and experiment. IEEE J. Quant. Electron. 26, 1845–1851 (1990)

    Article  ADS  Google Scholar 

  13. I.C.M. Littler, S. Balle, K. Bergmann, Continuous-wave laser without frequency-domain-mode structure: investigation of emission properties and build-up dynamics. J. Opt. Soc. Am. B 8, 1412–1420 (1991)

    Article  ADS  Google Scholar 

  14. I.C.M. Littler, S. Balle, K. Bergmann, The cw modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88, 514–522 (1992)

    Article  ADS  Google Scholar 

  15. S. Balle, F.V. Kowalski, K. Bergmann, Frequency shifted feedback dye laser operating at a small shift frequency. Opt. Commun. 102, 166–174 (1993)

    Article  ADS  Google Scholar 

  16. F.V. Kowalski, S. Balle, I.C.M. Littler, K. Bergmann, Lasers with internal frequency-shifted feedback. Opt. Eng. 33, 1146–1151 (1994)

    Article  ADS  Google Scholar 

  17. K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, H. Ito, Spectral characteristics of an all solid-state frequency-shifted feedback laser. IEEE J. Quant. Electron. 33, 103–111 (1997)

    Article  ADS  Google Scholar 

  18. K. Nakamura, T. Miyahara, H. Ito, Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser. Appl. Phys. Lett. 72, 2631–2633 (1998)

    Article  ADS  Google Scholar 

  19. P.I. Richter, L. Jakab, T.W. Hänsch, N. Adoph, A cw dye-laser tuned by an acoustooptic filter. Opt. Commun. 84, 159–161 (1991)

    Article  ADS  Google Scholar 

  20. P.I. Richter, T.W. Hänsch, Diode lasers in external cavities with frequency-shifted feedback. Opt. Commun. 85, 414–418 (1991)

    Article  ADS  Google Scholar 

  21. H. Sabert, E. Brinkmeyer, Pulse generation in fiber lasers with frequency shifted feedback. J. Lightwave Technol. 12, 1360–1368 (1994)

    Article  ADS  Google Scholar 

  22. M. Stellpflug, G. Bonnet, B.W. Shore, K. Bergmann, Dynamics of frequency shifted feedback lasers: simulation studies. Opt. Express 11, 2060–2080 (2003)

    Article  ADS  Google Scholar 

  23. J.-N. Maran, P. Besnard, S. LaRochelle, Theoretical analysis of a pulsed regime observed with a frequency-shifted-feedback fiber laser. J. Opt. Soc. Am. B 23, 1302–1311 (2006)

    Article  ADS  Google Scholar 

  24. J. Martin, Y. Zhao, S. Balle, M.P. Fewell, K. Bergmann, Visible-wavelength diode laser with weak frequency-shifted optical feedback. Opt. Commun. 112, 109–121 (1994)

    Article  ADS  Google Scholar 

  25. L.A. Vazquez-Zuniga, Y. Jeong, Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: Experimental results. Opt. Commun. 306, 1–8 (2013)

    Article  ADS  Google Scholar 

  26. L.A. Vazquez-Zuniga, Y. Jeong, Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: numerical results. Opt. Commun. 322, 54–60 (2014)

    Article  ADS  Google Scholar 

  27. H. Chen, S.P. Chen, Z.F. Jiang, J. Hou, Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers. Sci. Rep. 6, 26431 (2016)

    Article  ADS  Google Scholar 

  28. C. Ndiaye, T. Hara, F.V. Kowalski, H. Ito, Spectral characteristics of a frequency-shifted feedback ring laser using a semiconductor optical amplifier. Jpn. J. Appl. Phys. 47, 3483–3485 (2008)

    Article  ADS  Google Scholar 

  29. M. Sellahi, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, Highly coherent modeless broadband semiconductor laser. Opt. Lett. 40, 4301–4304 (2015)

    Article  ADS  Google Scholar 

  30. L.P. Yatsenko, B.W. Shore, K. Bergmann, Theory of a frequency shifted feedback laser. Opt. Commun. 236, 183–202 (2004)

    Article  ADS  Google Scholar 

  31. L.P. Yatsenko, B.W. Shore, K. Bergmann, Coherence in the output spectrum of frequency shifted feedback lasers. Opt. Commun. 282, 300–309 (2009)

    Article  ADS  Google Scholar 

  32. H.G. de Chatellusand, J.P. Pique, Coherence properties of modeless lasers. PoS 9, 1 (2009)

    Google Scholar 

  33. H.G. de Chatellusand, J.P. Pique, Statistical properties of frequency shifted feedback lasers. Opt. Commun. 283, 71–77 (2010)

    Article  ADS  Google Scholar 

  34. H.G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, O. Hugon, The hypothesis of the moving comb in frequency shifted feedback lasers. Opt. Commun. 284, 4965–4970 (2011)

    Article  ADS  Google Scholar 

  35. H.G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, O. Hugon, Theory of Talbot lasers. Phys. Rev. A 88, 033828 (2013)

    Article  ADS  Google Scholar 

  36. J.P. Pique, Pulsed frequency shifted feedback laser for accurate long distance measurements: beat order determination. Opt. Commun. 286, 233–238 (2013)

    Article  ADS  Google Scholar 

  37. H.G. de Chatellus, O. Jacquin, O. Hugon, E. Lacot, Quiet broadband light. Phys. Rev. A 90, 033810 (2014)

    Article  ADS  Google Scholar 

  38. H.G. de Chatellus, L.R. Cortés, J. Azaña, Optical real-time Fourier transformation with kilohertz resolutions. Optica 3(1), 1–8 (2016)

    Article  Google Scholar 

  39. I.C.M. Littler, H.-M. Keller, U. Gaubatz, K. Bergmann, Velocity control and cooling of an atomic-beam using a modeless laser. Z. Phys. D18, 307–308 (1991)

    ADS  Google Scholar 

  40. J. Hoffnagle, Proposal for continuous white-light cooling of an atomic beam. Opt. Lett. 13, 102–104 (1988)

    Article  ADS  Google Scholar 

  41. D.T. Mugglin, A.D. Streater, S. Balle, K. Bergmann, Observation of white light-induced drift separation of Rb isotopes. Opt. Commun. 104, 165–174 (1993)

    Article  ADS  Google Scholar 

  42. J.R.M. Barr, G.Y. Young, M.W. Phillipe, Accurate optical frequency-interval measurement by use of nonresonant frequency comb generation. Opt. Lett. 18, 1010–1012 (1993)

    Article  ADS  Google Scholar 

  43. M.J. Lim, C.I. Sukenik, T.H. Stiefvater, P.H. Bucksbaum, R.S. Conti, Improved design of a frequency-shifted feedback diode laser for optical pumping at high magentic field optics. Opt. Commun. 147, 99–102 (1998)

    Article  ADS  Google Scholar 

  44. M. Cashen, V. Bretin, H. Metcalf, Optical pumping in \(^{4}\text{ He }^{*}\) with frequency-shifted feedback amplification of light. JOSA B17, 530–533 (2000)

    Article  ADS  Google Scholar 

  45. J.-P. Pique, S. Farinotti, Efficient modeless laser for a mesospheric sodium laser guide star. JOSA B20, 2093–2101 (2003)

    Article  ADS  Google Scholar 

  46. F. Marc, I.C. Moldovan, H.G. de Chatellus, J.P. Pique, High power modeless lasers for sodium laser guide stars. Ann. Phys. 32, 83–85 (2007)

    Article  Google Scholar 

  47. J.-P. Pique, V. Fesquet, S. Jacob, Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier. Appl. Opt. 50, 6294–6301 (2011)

    Article  ADS  Google Scholar 

  48. V.I. Romanenko, A.V. Romanenko, L.P. Yatsenko, G.A. Kazakov, A.N. Litvinov, B.G. Matisov, Y.V. Rozhdestvensky, Dark resonances in the field of frequency-shifted feedback laser radiation. J. Phys. B 43, 215402 (2010)

    Article  ADS  Google Scholar 

  49. S. Balle, K. Bergmann, Self-pulsing and instabilities in a unidirectional ring dye laser with intracavity frequency shift. Opt. Commun. 116, 136–142 (1995)

    Article  ADS  Google Scholar 

  50. H.G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, J. Marklof, Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers. Opt. Express 21, 15065–15074 (2013)

    Article  ADS  Google Scholar 

  51. M.P. Nikodem, E. Kluzniak, K. Abramski, Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber laser. Opt. Express 17, 3299–3304 (2009)

    Article  ADS  Google Scholar 

  52. M.P. Nikodem, K. Abramski, Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique. Opt. Commun. 283, 2202–2205 (2010)

    Article  ADS  Google Scholar 

  53. A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, C.K.N. Patel, Progress in rapidly-tunable external cavity quantum cascade lasers with a frequency-shifted feedback. Photonics 3, 19 (2016)

    Article  Google Scholar 

  54. H. Zhang, M. Brunel, M. Romanelli, M. Vallet, Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity. Appl. Opt. 55, 2467–2473 (2016)

    Article  ADS  Google Scholar 

  55. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, M. Rioux, Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40, 10–19 (2001)

    Article  ADS  Google Scholar 

  56. P. de Groot, Unusual techniques for absolute distance measurement. Opt. Eng. 40, 28–32 (2001)

    Article  ADS  Google Scholar 

  57. J. Geng, Structered-light 3D surface imaging. Adv. Opt. Photon. 3, 128–160 (2011)

    Article  Google Scholar 

  58. G. Berkovic, E. Shafir, Optical methods for distance and displacement measurements. Adv. Opt. Photon. 4, 441–471 (2012)

    Article  Google Scholar 

  59. P.J. Delfyett, D. Mandridis, M.U. Piracha, D. Nguyen, K. Kim, S. Lee, Chirped pulse laser sources and applications. Prog. Quant. Electron. 36, 475–540 (2012)

    Article  ADS  Google Scholar 

  60. I. Coddington, W.C. Swann, L. Nenadovic, N.R. Newbury, Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 352–356 (2009)

    Article  ADS  Google Scholar 

  61. J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, Time-of-flight measurement with femtosecond light pulses. Nat. Photon. 4, 716–720 (2010)

    Article  ADS  Google Scholar 

  62. S.A. van den Berg, S.T. Persijn, G.J.P. Kok, M.G. Zeiouny, N. Bhattacharya, Many-wavelength interferometry with thousands of lasers for absolute distancemeasurement. Phys. Rev. Lett. 108, 183901 (2012)

    Article  ADS  Google Scholar 

  63. E. Baumann, F.R. Giorgetta, J.D. Deschênes, W.C. Swann, I. Coddington, N.R. Newbury, Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt. Express 22, 24914–24928 (2014)

    Article  ADS  Google Scholar 

  64. Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, H. Zeng, 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity. Opt. Express 22, 4662–4670 (2014)

    Article  ADS  Google Scholar 

  65. R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, H. Bosse, Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection. Meas. Sci. Technol. 26, 084001 (2015)

    Article  ADS  Google Scholar 

  66. S.A. van den Berg, S. van Eldik, N. Bhattacharya, Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Sci. Rep. 5, 14661 (2015). doi:10.1038/srep14661

  67. Y.S. Jang, G. Wang, S. Hyun, H.J. Kang, B.J. Chun, Y.J. Kim, S.W. Kim, Comb-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep. 6, 31770 (2016). doi:10.1038/srep31770

  68. D.J. Webb, R.M. Taylor, J.D.C. Jones, D.A. Jackson, Interferometric optical path difference measurement using sinusoidal frequency modulation of a diode laser. Opt. Commun. 66, 245–247 (1988)

    Article  ADS  Google Scholar 

  69. K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, H. Ito, Optical frequency domain ranging by a frequency-shifted feedback laser. IEEE J. Quant. Electron. 36, 305–316 (2000)

    Article  ADS  Google Scholar 

  70. H. Ito, T. Hara, C. Ndiaye, Frequency-shifted-feedback laser for precise remote 3D measurement for industry applications. Rev. Laser Eng. Suppl. 2008(36), 1038–1041 (2008)

    Article  Google Scholar 

  71. C. Ndiaye, T. Hara, H. Ito, Performance of a solid-state frequency-shifted feedback laser in optical ranging. JEOS: RP 4, 09010 (2009)

    Article  ADS  Google Scholar 

  72. S. Umemoto, M. Fujii, N. Miyamoto, T. Okamoto, T. Hara, H. Ito, Y. Fujino, Deflection measurement for bridges with frequency-shifted feedback laser. in Proceedings of the Bridge Maintenance, Safety, Management and Life-cycle Optimization, pp. 2570–2574 (2010)

  73. V.V. Ogurtsov, L.P. Yatensko, V.M. Khodakovskyy, B.W. Shore, G. Bonnet, K. Bergmann, Experimental characterization of an \(\text{ Yb }^{3+}\)-doped fiber ring laser with frequency-shifted feedback. Opt. Commun. 266, 627–637 (2006)

    Article  ADS  Google Scholar 

  74. K.A. Shore, D.M. Kane, Optimum modulation frequency for FM seeded FSF laser ranging. IEEE Proc.-Optoelectron. 153, 284–286 (2006)

    Article  Google Scholar 

  75. M.F. Brandl, O.D. Mücke, Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti: sapphire laser seeded by a phase-modulated single-frequency fiber laser. Opt. Lett. 35, 4223–4225 (2010)

  76. J. Paul, Y. Hong, P.S. Spencer, I. Pierce, K.A. Shore, Simple and accurate optical frequency domain ranging using off-the-shelf dfb lasers subject to frequency-shifted optical feedback. IEEE Photon. Technol. Lett. 19, 1708–1710 (2007)

    Article  ADS  Google Scholar 

  77. J. Paul, Y. Hong, P.S. Spencer, I. Pierce, K.A. Shore, Optical frequency-domain ranging using a frequency-shifted feedback distributed-feedback laser. IET Optoelectron 1, 277–279 (2007)

    Article  Google Scholar 

  78. A. Dieckmann, M. Amann, Frequency modulated continous-wave lidar. SPIE Proc. 2271, 134 (1994)

    Article  ADS  Google Scholar 

  79. A.B. Mateo, Z.W. Barber, Precision and accuracy testing of FMCW ladar-based length metrology. Appl. Opt. 54, 6019–6024 (2015)

    Article  ADS  Google Scholar 

  80. K. Bergmann, L.P. Yatsenko, G. Bonnet, B.W. Shore: Method and device for measuring distance. European patent EP1470621 (2003) and United states patent US 7684019 (2010)

  81. K. Kasahara, K. Nakamura, M. Sato, H. Ito, Dynamic properties of an all solid-state frequency-shifted feedback laser. IEEE J. Quantum Electron. 34, 190–203 (1998)

    Article  ADS  Google Scholar 

  82. M.G. Littmann, H.J. Metcalf, Spectrally resolved narrow pulsed dye laser without beam expander. Appl. Opt. 17, 2224–2227 (1978)

    Article  ADS  Google Scholar 

  83. K. Liu, M.G. Littman, Novel geometry for single-mode scanning of tunable lasers. Opt. Lett. 6, 117–18 (1981)

    Article  ADS  Google Scholar 

  84. B. Edlen, The refractive index of air. Metrologia 2, 71–80 (1966)

    Article  ADS  Google Scholar 

  85. F. Aflatouni, B. Abiri, A. Rekhi, A. Hajimiri, Nanophotonic coherent imager. Opt. Express 23, 5117–5125 (2015)

    Article  ADS  Google Scholar 

  86. J.V. Moloney, J. Hader, S.W. Koch, Quantum design of semiconductor active materials. Laser & Photon. Rev. 1, 24–43 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the German “Bundesministerium für Bildung und Forschung” (BMBF) under the projects numbered 13-N-9345 and 13-N-9346. K.B. acknowledges additional support from the research center OPTIMAS of the state of Rhineland-Palatinate. We also thank B.W.Shore for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Yatsenko.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.I., Ogurtsov, V.V., Bonnet, G. et al. Ranging with frequency-shifted feedback lasers: from \(\upmu\)m-range accuracy to MHz-range measurement rate. Appl. Phys. B 122, 295 (2016). https://doi.org/10.1007/s00340-016-6567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6567-9

Keywords

Navigation